
GoCAD: GPU-Assisted Online Content-Adaptive Display
Power Saving for Mobile Devices in Internet Streaming

Yao Liu1, Mengbai Xiao2, Ming Zhang2, Xin Li3, Mian Dong4,
Zhan Ma5, Zhenhua Li6, Songqing Chen2

1SUNY Binghamton 2George Mason University
yaoliu@cs.binghamton.edu {mxiao3, mzhang8,sqchen}@gmu.edu

3Samsung Telecommunications America 4AT International, Inc.
x.li@samsung.com dongmian@gmail.com

5Nanjing University 6Tsinghua University
zhan.ma@gmail.com lizhenhua1983@tsinghua.edu.cn

ABSTRACT

During Internet streaming, a significant portion of the battery power

is always consumed by the display panel on mobile devices. To re-

duce the display power consumption, backlight scaling, a scheme

that intelligently dims the backlight has been proposed. To main-

tain perceived video appearance in backlight scaling, a compu-

tationally intensive luminance compensation process is required.

However, this step, if performed by the CPU as existing schemes

suggest, could easily offset the power savings gained from back-

light scaling. Furthermore, computing the optimal backlight scal-

ing values requires per-frame luminance information, which is typi-

cally too energy intensive for mobile devices to compute. Thus, ex-

isting schemes require such information to be available in advance.

And such an offline approach makes these schemes impractical.

To address these challenges, in this paper, we design and im-

plement GoCAD, a GPU-assisted Online Content-Adaptive Dis-

play power saving scheme for mobile devices in Internet streaming

sessions. In GoCAD, we employ the mobile device’s GPU rather

than the CPU to reduce power consumption during the luminance

compensation phase. Furthermore, we compute the optimal back-

light scaling values for small batches of video frames in an online

fashion using a dynamic programming algorithm. Lastly, we make

novel use of the widely available video storyboard, a pre-computed

set of thumbnails associated with a video, to intelligently decide

whether or not to apply our backlight scaling scheme for a given

video. For example, when the GPU power consumption would off-

set the savings from dimming the backlight, no backlight scaling

is conducted. To evaluate the performance of GoCAD, we imple-

ment a prototype within an Android application and use a Monsoon

power monitor to measure the real power consumption. Experi-

ments are conducted on more than 460 randomly selected YouTube

videos. Results show that GoCAD can effectively produce power

savings without affecting rendered video quality.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
DOI: http://dx.doi.org/10.1145/2872427.2883064.

Keywords

Internet Mobile Streaming; Liquid-Crystal Display (LCD); Power

Consumption; Backlight Scaling; GPU; Storyboard

1. INTRODUCTION
Growth in the popularity of mobile devices, including smart-

phones and tablets, has changed the way users consume video con-

tent today. For example, mobile devices now comprise over half of

YouTube’s views [6]. The video streaming experience on mobile

devices, however, is constrained by the on-device battery capac-

ity. On a mobile device, both the wireless network interface card

and the display consume a significant portion of the battery power

for data transmission and content rendering, respectively. Many

existing studies have proposed to reduce power consumption of the

wireless network interface cards by carefully scheduling data trans-

fers and putting them into low power sleep mode for as long as pos-

sible [15, 16, 18]. The display, however, cannot be put into sleep

mode and must be kept active during the entire video playback. A

previous study shows that the display subsystem is responsible for

about 38% to 68% of the total power consumption during video

playback [8]. This portion is expected to be larger on the high-

resolution and larger-sized display panels.

Mobile devices are typically equipped with one of two types of

display panels: (i) Liquid-Crystal Displays (LCD) or (ii) Organic

Light-Emitting Diode (OLED) displays. The two types of displays

operate on different principles and have vastly different power con-

sumption characteristics. OLED displays usually require a special

hardware control circuit to manage their power consumption [26].

Today, LCD still dominates the transparent display market as man-

ufacturing OLED is typically an order of magnitude more expen-

sive than LCD. In this study, we focus on saving the power con-

sumed by LCD displays.

In the LCD display subsystem, a major power drainer is the back-

light. Thus, backlight scaling has been proposed to reduce the

power consumption of the display by dimming the backlight. At

the same time, the brightness perceived by the human eye (inten-

sity) is maintained by increasing the affected image’s luminance.

In this way, the original image can be rendered with little or no dis-

tortion. However, implementing a backlight scaling strategy with

luminance compensation to save power during video playback is

challenging. First, to maintain rendered video quality, the backlight

level cannot be reduced below a point determined by the brightness

characteristics of each frame. This constraint requires that the max-

imum pixel luminance of every frame be determined, which can be

both time and energy intensive for mobile devices to compute. Sec-

ond, luminance compensation must be performed for every pixel in

every video frame. Thus, if increasing the luminance of one pixel

takes only several tens of CPU cycles, increasing the luminance

for the entire frame of a high resolution video on a high resolu-

tion display could consume tens of millions of CPU cycles. While

a powerful CPU could complete this task in real time, on a mo-

bile device, the corresponding power consumption overhead would

negate the power savings achieved via dimming the backlight. As

a result, some previous studies have suggested to pre-compute the

backlight scaling schedule offline, e.g., [20, 22], and perform lumi-

nance compensation using external computing resources [10, 23],

e.g., at a proxy server. Basically, such an offline approach requires

the video be made available in advance so that the luminance in-

formation of every frame can be extracted and then the backlight

scaling schedule can be determined for each frame based on the

calculation. Although the external computations proposed in these

methods allow power to be saved through backlight scaling, the

offline approach taken and the additionally required infrastructure

render these strategies impractical.

To overcome these challenges towards practical battery power

saving, in this work, we propose a GPU-assisted Online Content-

Adaptive Display power saving scheme, called GoCAD, for mobile

devices in Internet streaming sessions. Instead of relying on exter-

nal computing resources for offline processing, GoCAD operates

in an online manner given small batches of video frames. To re-

duce the power consumption, GoCAD uses the Graphics Process-

ing Unit (GPU) to extract per-frame luminance information from

hardware-decoded video frames during video streaming playback.

Then it employs a dynamic programming approach for determining

the optimal backlight scaling schedule. To render a video frame

with little or no distortion while dimming the backlight, GoCAD

uses the RenderScript framework to interface with the GPU on mo-

bile devices to adjust the pixel luminance of the frame in real-time.

Compared to schemes using the CPU for luminance compensation,

this allows GoCAD to achieve a net power savings in combination

with the backlight scaling strategy.

In addition, GoCAD also makes novel use of video storyboard

information to predict if power savings can be achieved. Story-

board information today is pre-computed and made widely avail-

able by service providers. For example, YouTube added the story-

board feature in January 2012 to provide thumbnail previews of

frames selected at regular intervals within the video [5]. Other

video service providers, including Netflix and Hulu, were even

earlier adopters of this feature than YouTube. Storyboards are of-

ten downloaded by the mobile video streaming application before

video playback starts, which allows users to browse the video sto-

ryline. The availability of this storyboard information makes it pos-

sible for GoCAD to determine if backlight scaling should be used

before the playback starts.

To evaluate the effectiveness of GoCAD, we implement it within

a mobile video streaming application on the Android platform.

During video playback, the mobile application sets the backlight

according to the backlight scaling calculated online and simulta-

neously performs luminance compensation by increasing pixel lu-

minance through GPU computations. We randomly selected more

than 460 YouTube videos for evaluation. A Monsoon power mon-

itor is used for real measurements of power consumption. Results

show that with GoCAD, our video streaming application can save

power for 76.3% videos with negligible (up to 5%) pixel distortion,

and 88.7% videos if 10% pixel distortion is allowed. For 56.0%

100%	

60%	

60%	

RGB Values Backlight
Perceived

Display

Figure 1: Backlight scaling and luminance compensation.

of the videos in our study, the GoCAD can achieve more than 500

mW (10%) of power savings.

The remainder of the paper is organized as follows. Section 2

discusses the background. We present the design of GPU-assisted

Online Content-Adaptive Display power saving mechanism in Sec-

tions 3 and 4. The implementation is described in Section 5, and

the evaluation is discussed in Section 6. We discuss related work in

Section 7 and make concluding remarks in Section 8.

2. BACKGROUND

2.1 YUV Color Space
Video decoders usually operate over video streams in the YUV

color space. In the term “YUV”, Y indicates the luminance com-

ponent (the brightness) and U and V are the chrominance (color)

components. Because display hardware uses the RGB color space,

decoded video frames must be converted from the YUV color space

to the RGB color space before they are displayed. Please refer to [1]

for the conversions between YUV and RGB color spaces.

2.2 Saving Power in Liquid-Crystal Display
A liquid-crystal display (LCD) is a flat panel display that uses

the light modulating properties of liquid crystals. Liquid crystals

do not emit light directly. Instead, the backlight on the LCD panel

illuminates the liquid crystals. A liquid crystal’s transmittance can

vary so that different pixels can have different luminance levels

even though the intensity of the backlight is the same for all liq-

uid crystals.

Previous studies have pointed out that the backlight of an LCD

display dominates the energy consumption of the display subsys-

tem and that its power consumption is different at different bright-

ness levels [8, 27]. Therefore, power can be saved if we reduce

the backlight level of the LCD display. However, simply reduc-

ing the backlight level can lead to image distortion, which is nor-

mally defined as the resemblance between the original image and

the backlight-scaled image [10, 29]. For example, in Figure 1, the

top of the figure shows the original image displayed with 100%

backlight level. While reducing the backlight level can save dis-

play power consumption, it will result in a darker version of the

image be rendered as shown in the middle of the figure.

2.3 Backlight Scaling and Luminance Com-
pensation

One way to resolve the problem is by concurrently scaling both

the backlight level and the pixel luminance [9, 11, 13, 23]. Suppose

the display backlight levels lie within the range (0, 1], where 0 indi-

cates that the backlight is off, and 1 indicates maximum brightness.

With backlight scaling, for every frame in the video, we set the

display backlight level to b ∈ (0, 1]. To avoid distortion under re-

duced backlight levels, luminance compensation [10, 29] is used to

increase the luminance (the Y component of the YUV representa-

tion) of every pixel in the frame by a factor of 1
b

. In this way, the

observed pixel luminance is adjusted to a value that is the same as

that of the original frame’s: Y ′ × b = Y × 1
b
× b = Y . With joint

backlight scaling and luminance compensation, display power con-

sumption can be saved without any observable fidelity loss. The

idea is also depicted in bottom of Figure 1. If we increase the lumi-

nance of every pixel in the frame, the frame can be rendered with

no distortion.

While the idea of increasing the luminance of video frames at

runtime to compensate for a dimmed backlight is straightforward,

significant challenges lie in determining the appropriate backlight

scaling level, b, and adjusting the luminance of every pixel in the

video in an energy efficient manner.

First, care must be taken when choosing the backlight scaling

level, b, because we cannot scale up the Y component of a pixel

to be higher than its maximum (i.e., 255). If b is chosen to be a

value such that Y × 1
b
> 255, then the observed luminance will

be lower than the luminance under the original brightness level,

distorting the displayed image. In previous work this distortion

has been referred to as a “clipping artifact” [12]. To avoid creating

these “clipping artifacts,” we must limit any brightness adjustments

to b ≥ Y (max)

255
, where Y (max) is the maximum pixel luminance in

the frame. However, this requires that we compute Y (max) of every

frame in the video, which is both computation and time intensive.

Given the stringent timing requirement in video streaming applica-

tions and the need for net power savings, much existing work has

proposed to offload this task to external computing resources. In

these schemes, external machines pre-process videos and extract

the per-frame luminance information in an offline manner [17, 20,

22]. This makes these schemes hardly practical.

Second, to increase the luminance of every pixel in the frame by

a factor of 1
b

, many techniques rely on the CPU to perform per-

pixel manipulation [11, 13]. However, this pixel-level manipula-

tion is also time and computation intensive and may significantly

offset, or even negate, the power savings achieved via backlight

dimming. For example, for a 30 fps video, a single frame should

be rendered approximately every 33.3 ms. However, according to

our experiments on Android devices, the CPU usually needs on the

order of hundreds of milliseconds to perform per-pixel luminance

compensation on a 1280×720 frame. To avoid this time and com-

putation intensive step on the mobile device, Hsiu et al. and Lin

et al. propose to simply choose a critical backlight level for each

frame as the scaling constraint [17, 20] rather than performing lu-

minance compensation. This strategy, however, can lead to a large

amount of distortion of the displayed frames. Ruggiero et al. con-

sider a special multimedia processor, the Freescale i.MX31, which

has an Image Processing Unit (IPU) that can be used to offload the

luminance adjustment task from the CPU [25]. Rather than a client-

side solution, Pasricha et al. [23] and Cheng et al. [10] propose to

migrate the computation to an intermediate proxy server that com-

putes the backlight scaling schedule and transcodes a luminance-

adjusted version of the original video.

Compared to existing work, our proposed solution does not rely

on external computational resources to pre-compute per-frame lu-

minance information offline or to perform luminance compensa-

tion. Instead, GoCAD accesses raw video frames from the output of

the mobile devices’ hardware video decoder during video stream-

ing playback. It uses the RenderScript framework to interface with

the GPU to both extract luminance information and, later, to per-

form luminance compensation. Using the GPU for these per-pixel

tasks in a highly parallelized manner consumes far less power than

the CPU and satisfies the stringent timing requirement for real-time

video frame rendering.

3. DESIGN OF GoCAD

3.1 Overview
GoCAD works in an online manner. It extracts luminance in-

formation of video frames as they are being decoded during video

streaming playback. To determine the backlight scaling schedule

that maximizes power savings under a set of constraints, we col-

lect a batch of frames by buffering the decoded raw frames for a

small amount of time before rendering them. Since video stream-

ing applications already need to wait for enough video content to

be downloaded before playback can start to avoid playback hic-

cups (the initial “buffering phase” [24]), temporarily buffering the

decoded raw frames will not incur additional playback delay. After

the backlight scaling schedule is calculated, we perform luminance

compensation on the frames and render them on the display with

lower backlight levels.

Logically, GoCAD consists of three modules: the Scanning

Module, the Dynamic Programming Module and the Rendering

Module. They work together in a pipeline fashion for processing

decoded frames before rendering.

Scanning Module: As video frames are being decoded, the Scan-

ning Module selects beacon frames at fixed interval. For every

beacon frame, the Scanning Module extracts its pixel luminance

information. It does so by cutting each frame into sub-images and

computes their corresponding pixel luminance histograms, taking

advantage of the highly parallel architecture of the GPU. The Scan-

ning Module then collects all results together to get the histogram

of the entire frame and forwards this information to the Dynamic

Programming Module.

Dynamic Programming Module: Given an input sequence of

maximum beacon frame luminance values and settings of vari-

ables associated with constraints (discussed later), the Dynamic

Programming Module outputs a backlight scaling schedule that

minimizes the backlight levels. To maximize power savings un-

der constraints, this module runs only when the Scanning Module

has forwarded pixel luminance histogram information from enough

beacon frames to form a meaningful batch of frames. In this study,

we buffer decoded frames for 4 seconds. That is, if a video is en-

coded at 30 frames-per-second, we can form a meaningful batch of

120 frames for backlight scaling schedule calculation.

Rendering Module: This module is responsible for synchronizing

frames for rendering to the display during video playback. It sets

the backlight level according to the schedule computed by the Dy-

namic Programming Module. Before rendering each frame with

backlight scaling, the rendering module also performs luminance

compensation for every pixel of the frame.

The core design piece of our GoCAD mechanism is the Dy-

namic Programming Module, which determines optimal backlight

levels subject to a set of constraints associated with maximum lu-

minance values, user tolerance to display flickering, and respon-

siveness of display hardware. Next, we present the details of these

constraints and the design of our dynamic programming algorithm

that computes optimal backlight scaling schedule subject to these

constraints.

3.2 Display Power Saving Constraints
Our dynamic programming algorithm enforces three constraints

on computed backlight levels:

Distortion Constraint. To avoid creating “clipping artifacts”, no

adjusted luminance value in any pixel in any frame can exceed

255. This distortion-based constraint gives a lower bound on the

adjusted backlight level for every frame in the video. The distor-

tion constraint is expressed in our dynamic programming algorithm

by restricting the backlight level of frame f , bf , to be greater than

Y
(max)
f

255
, where Y

(max)
f indicates the maximum luminance value of

video frame f .

Variation Constraint. While it is tempting to set the backlight

level of every frame to its lowest possible value subject to the dis-

tortion constraint to maximize power savings, changing backlight

levels between frames could cause inter-frame brightness distor-

tion, often perceived as flickering, when the variation between two

consecutive backlight levels is above a certain threshold. There-

fore, we need to limit the brightness variation between two consec-

utive frames to reduce this flickering effect. In our dynamic pro-

gramming algorithm, the variation constraint is enforced by setting

the value of ∆b, a variable that limits the ratio of change in back-

light level. That is, if the backlight is at level bf at frame f and bf+1

at frame f+1, then, in the dynamic programming algorithm, we se-

lect values of bf+1 such that bf×(1−∆b) ≤ bf+1 ≤ bf×(1+∆b).

Duration Constraint. In addition, due to limitations of hardware

performance, it is impossible to adjust the backlight promptly for

every video frame, as the underlying hardware requires a minimum

amount of time to apply any brightness adjustments. This addi-

tional, hardware-dependent constraint makes per-frame backlight

scaling infeasible in practice. As a result, we must specify a mini-

mum interval (in terms of numbers of frames) where the backlight

level must remain constant. In our dynamic programming algo-

rithm, the duration constraint is enforced by setting the value of a

variable dmin, which specifies the minimum number of frames the

backlight must remain at the same level.

3.3 Dynamic Programming Algorithm
Our dynamic programming algorithm runs in an online manner,

piecewise over small batches of video frames, as raw video frame

information becomes available from the mobile device’s hardware

video decoder and maximum pixel luminance information of the

frames are extracted by the Scanning Module using the GPU.

The design of this algorithm represents a balance over two al-

ternatives: a purely online algorithm to make backlight scaling de-

cisions solely based on the current and previous frames can lead

to either non-optimal backlight scaling level assignments, or image

distortion, because it is difficult to estimate future luminance values

that are needed for calculating optimal backlight scaling levels. On

the other hand, a fully-offline backlight scaling algorithm would

require that maximum luminance information be computed before

the video is played on the mobile device, either requiring exter-

nal computational resources or additional computation (and power

consumption) on the mobile device before video playback can start.

Specifically, the algorithm computes the values of the function

B(f, b), the minimum cumulative backlight levels ending at frame

f with the final backlight interval set to level b. B(f, b) can be

computed by the following recurrence:

B(f, b) = min
f ′,b′

(b× (f − f ′) +B(f ′, b′)), (1)

where f ′ is the frame number of the end of the previous interval,

subject to f ′ ≤ f − dmin, and b′ is the backlight level of the previ-

ous interval. b′ is also subject to the variation constraint discussed

above.

Our dynamic programming algorithm will minimize power con-

sumption if a linear relationship exists between backlight levels and

display power. We confirm that such a linear relationship exists in

Figure 6. To calculate backlight values from the algorithm, we must

first run a forward step to compute the values of B(f, b). Then we

must run a backward step where values of bf , the optimal backlight

value at video frame f , are recovered. The forward and backward

steps are computed separately for each batch of frames.

The backlight setting at the beginning of each batch is set to the

value computed for the end of the previous batch. A scaling factor,

C(b), is applied at the final frame of each batch for each value of b
to make it less likely that the algorithm chooses a backlight setting

for the final frame of the batch so that no feasible solution exists

for the first frame of the next batch. (This situation could occur if a

significant change in maximum luminance occurs at the boundary

of batches.) If no feasible solution exists for a batch of frames, the

dynamic programming algorithm is retried for the batch without

applying constraints at the boundary between the first frame of the

current batch and backlight value at the last frame of the previous

batch.

Pseudocode to compute the dynamic programming recurrence is

depicted in Figure 2. (Details of initialization and array bounds

checking are omitted from the pseudocode.)

4. USING STORYBOARD FOR POWER

SAVINGS PREDICTION
When using the GPU for computing luminance histogram and

for luminance compensation, we still need to take into account

the additional power consumed by the GPU. That is, we need to

determine whether or not the display power that can be saved is

greater than the power consumed by the GPU. It is only appropri-

ate to apply our GoCAD mechanism when net power savings can

be achieved.

In this section, we discuss how to improve our basic GoCAD

mechanism by leveraging the video storyboard information for pre-

dicting if net power savings can be achieved. Storyboard is com-

monly available from many video streaming service providers (e.g.,

YouTube, Netflix, Hulu, etc.). The storyboard provides thumbnails

of video frame images sampled at fixed intervals. These thumbnail

images are pre-computed by the online video streaming services

and are often made available via APIs used by the mobile video

streaming applications. Storyboard information allows us to per-

form a significantly smaller amount of computation to obtain an

estimate of luminance information than the computation required

to extract exact luminance information by processing a full set of

raw video frames.

Storyboard images cannot be directly used for backlight scaling

because their lack of full video information and long sampling in-

tervals (usually longer than 1 second) can result in significant visual

distortion of the backlight-scaled video. Storyboard information,

however, can be used to estimate the amount of power that will be

saved in our online algorithm. Low cost estimation of whether Go-

CAD can save power can result in improved aggregate performance

since GoCAD can be turned off when power may not be saved.

1: ⊲ On input Y (max)[Fbegin : Fend], indicating a sequence of

maximum luminance values from frame Fbegin to frame Fend

in a video, compute L, an array containing minimum backlight

levels subject to constraints.

2: ⊲ Compute the recurrence

3: for f in [Fbegin, Fend] do

4: for f ′ in [Fbegin, f − dmin] do

5: for b ≥ max(Y (max)[f ′ + 1 : f])/255 do

6: for b′ in [b/(1 + ∆b), b/(1−∆b)] do

7: if b× (f − f ′) +B[f ′, b′] < B[f, b] then

8: B[f, b] = b× (f − f ′) +B[f ′, b′]
9: H[f, b] = (f ′, b′)

10: ⊲ Backtracking phase

11: L = array(F)

12: f = Fend

13: b = arg min
b′

B[f, b′]× C[b′]

14: while f >= Fbegin do

15: (f ′, b′) = H[f, b]
16: L[f ′ + 1 : f] = b
17: f ← f ′

18: b← b′

19: return L

Figure 2: Computing the optimal backlight scaling level with

O(|F |2 × |b|2) complexity, where |F | indicates the number of

frames in the batch and |b| indicates the number of possible

values of b. In the algorithm, B[f, b] indicates the sum of

the backlight levels ending at frame f whose final constant-

brightness interval level is b, Fbegin indicates the beginning

frame and Fend the ending frame in a batch of video frames,

dmin is the shortest allowed constant-backlight interval (in

frames), Y (max)[f ′ : f] indicates the maximum luminance val-

ues over video frames f ′ through f , ∆b encodes the constraint

specifying the allowable backlight level changes between ad-

jacent frames, H[f, b] is a history array that records how the

minimum-backlight-level array B[f, b] was constructed, and

C[b] is a set of compensation values, reflecting prior knowledge

about expected backlight values in most videos, to reduce the

likelihood that backlight scaling values at the end of an inter-

val will result in unsatisfiable constraints when the backlight

scaling values for the next interval are computed.

Our modified storyboard-GoCAD scheme thus involves the fol-

lowing steps:

1. Extract maximum luminance values from the storyboard.

2. Use the maximum luminance values of storyboard images to

estimate the amount of power that our GoCAD scheme can

save.

3. If the estimated savings is positive, play the video using the

GoCAD scheme. Otherwise run playback without backlight

scaling.

4.1 Storyboard Quality and Availability
Figure 3 shows an example storyboard of a YouTube video. A

storyboard is a series of reference images, typically of thumbnail

size, that are scaled down from frames sampled from a video. Sto-

ryboards are usually provided as a viewing experience enhance-

ment feature in the video player, providing users with the ability

to browse the video’s story line and locate content of interest with

ease by dragging the playback progress bar. Storyboard images are

(a) Storyboards are provided as an enhancement feature in the
YouTube video player. Both mobile and desktop YouTube ap-
plications make use of storyboards. (This figure shows the
YouTube desktop video player.)

(b) A storyboard consists of multiple thumbnail images.

Figure 3: The Storyboard of a YouTube video.

organized by time and put into a composite .jpg file as shown in

Figure 3(b). In storyboards generated by YouTube, for example,

each .jpg file may contain up to 10 × 10 storyboard thumbnail

images. Depending on the number of storyboard images, multi-

ple .jpg files may be needed. Storyboard images are provided at

different quality levels. For example, we observed four storyboard

image quality levels on YouTube (L0, L1, L2 and L3), with the

resolution of 48 × 27 (L0), 80 × 45 (L1), 160 × 90 (L2), and

240× 180 (L3), respectively. These images are extracted at differ-

ent intervals. The default storyboard (L0) consists of 100 im-

ages at the resolution of 48×27 (lowest quality) no matter how long

the video is. Storyboards at other levels (L1, L2, and L3) consist

of images that are sampled every 1, 2, 5, or 10 seconds, depending

on the length of the video. Not all quality levels of storyboards are

available for all videos: L0 and L1 are available for most videos,

while only a very small percentage of videos have storyboards at

L3 quality level. Storyboards found on other video streaming web-

sites, such as Netflix and Hulu, have similar characteristics to those

on YouTube.

4.2 Using Storyboards to Estimate Backlight
Scaling Power Consumption

Since storyboards only contain thumbnail images for frames se-

lected at fixed intervals, they cannot provide exact per-frame max-

imum pixel luminance information needed by our dynamic pro-

gramming algorithm. To use storyboard information effectively,

we adapt our dynamic programming algorithm (Figure 2) to esti-

mate power consumption over a full set of storyboard images.

This adaptation is straightforward. Rather than running the dy-

namic programming algorithm on the maximum luminance values

of each frame in a batch of video frames, we run the algorithm

for all storyboard thumbnail images of the video. In addition, to

compute the value of Y
(max)
f , the maximum luminance at frame

f , rather than simply extracting the maximum luminance of the

storyboard image at frame f , we take the maximum over the sto-

ryboard image at frame f as well as the storyboard images before

and after it. This additional step allows us to minimize distortion

under incomplete knowledge of both the full frame resolution and

from subsampling frame at longer intervals. Once backlight scal-

ing values are computed for each storyboard image, our algorithm

expands the period of constant backlight level to cover all original

video frames nearest in time to the storyboard image.

Meanwhile, we also take into consideration the minimum length

the backlight must stay at the same level, dmin, and the maximum

inter-frame backlight scaling variation constraint, ∆b. We ensure

that the change in backlight scaling levels assigned to two consecu-

tive storyboard images is small enough such that the backlight can

be scaled up or down to the desired level in time without violating

the constraints.

To estimate the power savings, we first create a linear model re-

lating backlight levels to the amount of power consumed by the dis-

play. Because the model is linear, the display power consumption

over the full length of the video can be estimated by first computing

the dynamic programming recurrence giving the sum of backlight

scaling values over the entire video, then computing the power from

the model associated with this sum. If the power that can be saved

at the display is greater than the power consumed by the GPU, pos-

itive overall power savings is predicted.

Given that mobile video streaming applications today, such as

YouTube, Netflix, and Hulu, already download storyboards before

video playback starts, using storyboard data to estimate the power

consumption of our online backlight scaling algorithm can be easily

incorporated into video applications in real-world situations with-

out incurring additional network transmission overhead. On the

other hand, since a storyboard cannot provide complete luminance

information of all frames in a video, we need to be careful about re-

lying on the storyboard prediction for deciding whether to use the

GoCAD scheme. We discuss how well storyboard predicts power

savings in Section 6.3.

5. GoCAD IMPLEMENTATION
We implement the GoCAD power saving mechanism in an An-

droid video streaming application. Figure 4 shows the organization

of the application. The Scanning Module is connected to the Open

MAX (OMX) [3] layer, which supplies raw video frames that are

hardware-decoded. It selects beacon frames at fixed intervals for

analysis. This interval is determined by the capacity of the GPU

hardware. While selecting all frames as beacon frames for analysis

can provide the dynamic programming algorithm with fine-grained

information to maximize power savings and minimize distortion,

the GPU may not be powerful enough to process all frames in time

for playback. Therefore, we must find a balance between power

saving and in time playback.

For selected beacon frames, the Scanning Module uses the Ren-

derScript framework [4] to interface with the GPU to analyze the

pixel luminance histogram of each beacon frame. Collecting lu-

minance histogram information instead of simply the maximum

pixel luminance per frame allows us to compute a backlight scaling

schedule that results in greater power savings by allowing a small

number of pixels to be displayed with an observed luminance lower

than the original luminance. To do so, we can choose the (100−d)
percentile luminance of every frame as input to the dynamic pro-

Rendering

Module

Rendering

Module

RenderScript

Y−enhancement

YUV−RGB

Conversion

Programming

Dynamic

Module

OMX

Layer
Display

RenderScript

Histogram

Decoded Frames

Need scan? Max Luminance

Input Queue Output Queue

YUV Frames RGB Frames

Scanning

Figure 4: The organization of our GoCAD-enabled Android

application.

gramming algorithm, which produces up to d% pixel distortion

per frame.

The luminance information of batches of beacon frames are sent

as input to the Dynamic Programming Module, which outputs the

backlight scaling schedule for these frames. Next, all decoded

frames (in YUV format) together with the backlight scaling sched-

ule are sent to the Rendering Module. The Rendering Module sets

the backlight level according to the computed schedule. Before

a frame can be rendered, the Rendering Module uses the Render-

Script framework to interface with the GPU to perform luminance

compensation by increasing the Y component of each pixel in the

frame. Finally, it converts the YUV representation to RGB color

space using Y ′, U , and V for rendering.

6. PERFORMANCE EVALUATION
To evaluate the performance of GoCAD during video streaming

playback, we install our video streaming application on 4 Android

devices: one Samsung Galaxy Tab 2 7.0-inch tablet, one Samsung

Galaxy Tab 2 10.1-inch tablet, one Nexus 7 tablet, and one Nexus

9 tablet. The two Samsung tablets use the TI OMAP4430 SoC that

includes the PowerVR SGX540 GPU. The Nexus 7 tablet uses the

Qualcomm Snapdragon S4 Pro SoC with an Adreno 320 GPU. And

the Nexus 9 tablet uses the NVIDIA Tegra K1 SoC with a Kepler

DX1 GPU. To build the supported backlight level table for these

devices, we evenly pick 255 numbers in the range (0, 1].
To test GoCAD, we randomly select 468 YouTube videos using

the random prefix sampling method proposed by Zhou et al. [33].

We download all 468 videos and their corresponding storyboards

from YouTube for experiments and analysis. Figure 5 shows the

setup of our power measurement experiments. To accurately mea-

sure the power consumption during video playback, we use a Mon-

soon power monitor [2] to supply power to our testing devices di-

rectly.

We compare the power consumption of our GoCAD scheme with

the baseline case where backlight scaling is not enabled. We do not

compare our scheme with existing schemes discussed in Section 2

because these schemes either require offline pre-processing of the

videos or rely on external computational resources.

6.1 Display and GPU Power Consumption
Model

We build a display power consumption model as a function of

backlight levels using the Monsoon power monitor. During the

measurement, we close other applications and turn off the network

interfaces on the mobile devices. We first measure the baseline

Figure 5: Power measurement setup.

power consumption when the backlight is set to its lowest possible

level. Then, we gradually increase the backlight level and repeat

the measurement. To maintain reasonable user experience, we re-

strict the minimum normalized backlight level to 0.5.

The results are shown in Figure 6. We find that the display power

consumption of the 10.1-inch Galaxy Tab can be best represented

with the following linear model: p = w1 × b + w2, where b ∈
[0.5, 1] is the normalized display backlight level, w1 = 3512.7,

and w2 = 1053.4, with R2 = 0.993. The fit is shown in Figure

6(a). To measure the GPU power consumption, we first play a video

with the native video player application supplied by Android with

the backlight set to the maximum level. We then compare the aver-

age power consumption of the native player with our video player

application when GPU is used to scale pixel luminance by 1.0 (no

effect). Results show that when using GPU for luminance compen-

sation to play videos at 30 frames per second, the GPU consumes

the power of 578 mW. The parameters for the linear display power

consumption models for all 4 devices as well as the GPU power

consumption overhead of our application are shown in Table 1.

We use our display and GPU power models in combination with

the backlight scaling data computed using storyboard data to decide

whether or not GoCAD should be employed to save power.

6.2 Power Savings with Online Backlight
Scaling

To calculate the backlight scaling schedule in an online manner,

we must first determine how frequent should the beacon frames be

selected for luminance information scanning. We find that while

playing 720p videos, the GPU equipped on our testing devices are

able to scan a beacon frame every 10 frames while satisfying in

time video playback. We therefore select a beacon frame every

10 frames. We also need to determine appropriate values for pa-

rameters required in the algorithm in Figure 2, including dmin and

∆b. We set these parameters to different values and compute the

corresponding backlight scaling schedule. Five users were asked

to watch videos played using our GoCAD mechanism and report

whether they noticed flickering or distortion during playback. We

find that when we set ∆b to 0.06, users did not perceive any flicker-

ing or distortion. We thus use 0.06 for the optimal backlight scaling

data generation. Similarly, we find that setting dmin = 5 produces

no observable display hiccups. We therefore enforce that the dis-

play backlight level remains stable for at least 5 frames.

We use the Monsoon power monitor to measure real power sav-

ing for videos. Figure 7 shows the overall power consumption of

playing one video under different settings on all 4 testing devices.

This video is 540 seconds long. In this figure, “w/o scaling” rep-

resents the baseline setting where backlight scaling is not enabled,

while “online-2%” represents the setting where the backlight scal-

ing data is computed using the 98-percentile pixel luminance of

Table 1: Parameters for display power consumption model:

p = w1 × b + w2, where b ∈ [0.5, 1] is the normalized display

backlight level, and the GPU power consumption overhead of

our GoCAD app on 4 Android devices.

Display power model GPU power

w1 w2 R2 consumption

10.1-in Galaxy 3512.7 1053.4 0.993 578 mW

7.0-in Galaxy 2321.5 499.2 0.995 558 mW

Nexus 7 1505.0 447.2 0.998 486 mW

Nexus 9 2897.0 -216.4 0.999 867 mW

frames, which leads to up to 2% pixel distortion (pixels rendered

with lower observed luminance than their original luminance) per

frame.

For the 10.1-inch Galaxy Tab, when our GoCAD mechanism is

not used, GPU is put into sleep mode, and the average power con-

sumption is 5.03 Watts. When we apply online backlight scaling

that allows up to 2% distortion, the average overall power con-

sumption is reduced to 3.85 Watts, accounting for the GPU power

consumption, a 23.5% savings. If up to 5% distortion is allowed,

the average overall power consumption is further reduced to 3.74

Watts, a 25.6% savings. For the 7.0-inch Galaxy, when backlight

scaling is not enabled, the average overall power consumption of

the device is 3.39 Watts. When online backlight scaling is applied

with up to 2% distortion, the average overall power consumption is

reduced to 3.02 Watts, a 10.9% savings. If up to 5% distortion is

allowed, the average overall power consumption is further reduced

to 3.00 Watts, a 11.5% savings. For Nexus 7, the default video

player consumes 2.61 Watts power on average. When GoCAD is

used with up to 2% pixel distortion, the average overall power con-

sumption is 2.23 Watts, a 14.6% savings. When up to 5% pixel dis-

tortion is allowed, the average power consumption is 2.16 Watts,

a 17.2% savings. For Nexus 9, the default video player consumes

3.15 Watts power on average. When GoCAD is used with up to

2% pixel distortion, the average overall power consumption is 2.52

Watts, a 20.0% savings. When up to 5% pixel distortion is allowed,

the average power consumption is 2.45 Watts, a 22.2% savings.

We also run the online dynamic programming algorithm on all

468 downloaded YouTube videos. For each video, we decode the

video and extract the maximum, 98-percentile, 95-percentile, and

90-percentile pixel luminance for every frame. We then use this

information as input and emulate the behavior of GoCAD, which

takes a batch of frames as input and outputs the backlight scaling

schedule for each frame that will yield no distortion, up to 2%,

5%, and 10% pixel distortion per frame, respectively. Given the

backlight scaling data, we further use the GPU and display power

consumption models to estimate if and how much net power can be

saved.

The results are shown in Figure 8. For the 10.1-inch Galaxy

tablet, Figure 8(a) shows that if no distortion is allowed, 38 out of

468 videos can save power with GoCAD. If more distortion can

be tolerated, more power can be saved: 277 (59.2%), 357 (76.3%),

415 (88.7%) videos can save power with up to 2%, 5%, and 10%

pixel distortion, respectively. And 101 (21.6%), 180 (38.5%), 262

(56.0%) videos can save more than 500 mW (10%) power on aver-

age with up to 2%, 5%, and 10% pixel distortion. For the 7.0-inch

Galaxy tablet, if up to 2%, 5%, and 10% pixel distortion can be

tolerated, GoCAD can save power for 158 (33.8%), 250 (53.4%),

343 (73.3%) videos, respectively. For Nexus 7, if up to 2%, 5%,

and 10% pixel distortion can be tolerated, GoCAD can save power

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 0.5 0.6 0.7 0.8 0.9 1

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

W
)

Normalized Backlight Level

(a) 10.1-inch Galaxy Tab 2

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.5 0.6 0.7 0.8 0.9 1

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

W
)

Normalized Backlight Level

(b) 7.0-inch Galaxy Tab 2

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0.5 0.6 0.7 0.8 0.9 1

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

W
)

Normalized Backlight Level

(c) Nexus 7

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0.5 0.6 0.7 0.8 0.9 1

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

W
)

Normalized Backlight Level

(d) Nexus 9

Figure 6: Display power consumption model.

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500

P
o
w

e
r

C
o
m

s
u
m

p
ti
o
n
 (

W
)

Time (s)

w/o scaling
online-2%
online-5%

(a) 10.1-inch Galaxy Tab 2

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500

P
o
w

e
r

C
o
m

s
u
m

p
ti
o
n
 (

W
)

Time (s)

w/o scaling
online-2%
online-5%

(b) 7.0-inch Galaxy Tab 2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 100 200 300 400 500

P
o
w

e
r

C
o
m

s
u
m

p
ti
o
n
 (

W
)

Time (s)

w/o scaling
online-2%
online-5%

(c) Nexus 7

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500

P
o
w

e
r

C
o
m

s
u
m

p
ti
o
n
 (

W
)

Time (s)

w/o scaling
online-2%
online-5%

(d) Nexus 9

Figure 7: Measured results: power consumed by the entire device with online backlight scaling under different settings.

for 95 (22.4%), 162 (34.6%), 244 (52.1%) videos, respectively. For

Nexus 9, GoCAD can save power for 108 (23.1%), 188 (40.2%),

273 (58.3%) videos if up to 2%, 5%, and 10% pixel distortion can

be tolerated, respectively.

For backlight scaling schedule that may produce pixel distortion,

we examine the quality achieved by calculating the peak signal-to-

noise ratio (PSNR) and structural similarity (SSIM) [30] between

the rendered video and the original, non-backlight-scaled video.

Figure 9 shows that for all videos, their PSNR values are always

greater than 24 dB if up to 2% or 5% pixel distortion is allowed, and

always greater than 20 dB if up to 10% pixel distortion is allowed.

In addition, for 80% videos, their PSNR values are greater than 40

dB, 33 dB, and 28 dB when rendered with up to 2%, 5%, and 10%

pixel distortion, indicating good rendered frame quality.

Our results also show that even with up to 2%, 5%, and 10%

pixel distortion, the SSIM values are always greater than 0.998,

while existing schemes [17, 20] that choose not to perform the com-

putationally intensive luminance compensation step can only yield

SSIM values around 0.9. This confirms that with GPU-assisted lu-

minance compensation, our GoCAD mechanism can achieve much

better video quality than these schemes.

6.3 Performance of Storyboard-based Predic-
tion

Because storyboard does not contain complete information about

pixel luminance of all frames in a video, we next study how well

storyboard can predict if power can be saved via our GoCAD

scheme.

For all 468 randomly selected videos, we run our adapted dy-

namic programming algorithm using L0, L1, and L2 (when avail-

able) storyboard images. For example, to predict how much power

can be saved by GoCAD if we allow up to 10% pixel distortion

per frame, we use the 90-percentile pixel luminance of every sto-

ryboard image as input to the adapted dynamic programming algo-

rithm. We then calculate the corresponding storyboard-predicted

power savings for each storyboard level using the display and GPU

power consumption model. We assign positive label to a video if

GoCAD can save power and negative label otherwise. We evalu-

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n

Peak Signal-to-Noise Ratio (dB)

online-2%
online-5%

online-10%

Figure 9: PSNR (dB) between

the rendered video and the non-

backlight-scaled video.

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

ROC curve (area=0.99)

Figure 10: The ROC curve

for L2 storyboard predic-

tions of power savings under

online-10%.

Table 2: Area under the ROC curve (AUC) attained by predic-

tion based on different storyboard levels.

L0 L1 L2

online-0% 0.93 0.95 0.97

online-2% 0.95 0.97 0.98

online-5% 0.95 0.98 0.98

online-10% 0.93 0.99 0.99

ate if storyboard-based prediction can make correct decision about

whether to employ backlight scaling by computing the correspond-

ing Receiver Operating Characteristic (ROC) curve. The area under

the ROC curve (AUC) is closely related to a prediction algorithm’s

ability to rank a positive example over a negative example. The

AUC of a perfect ROC curve is 1.

Figure 10 shows the ROC curve for the L2 storyboard prediction

with 10% pixel distortion. Due to space limitation, we omit other

ROC curve figures. Results of the AUC metrics are listed in Ta-

ble 2. Storyboard predictions can attain an AUC as high as 0.99.

The table also shows that higher quality level storyboard can make

better classification decisions than those with lower quality levels,

indicating that higher quality storyboards should be used whenever

they are available.

 0

 0.2

 0.4

 0.6

 0.8

 1

-500 0 500 1000 1500

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

Power Savings (mW)

online-0%
online-2%
online-5%

online-10%

(a) 10.1-inch Galaxy Tab 2

 0

 0.2

 0.4

 0.6

 0.8

 1

-500 0 500 1000

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

Power Savings (mW)

online-0%
online-2%
online-5%

online-10%

(b) 7.0-inch Galaxy Tab 2

 0

 0.2

 0.4

 0.6

 0.8

 1

-500 0 500 1000

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

Power Savings (mW)

online-0%
online-2%
online-5%

online-10%

(c) Nexus 7

 0

 0.2

 0.4

 0.6

 0.8

 1

-1000 -500 0 500 1000

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

Power Savings (mW)

online-0%
online-2%
online-5%

online-10%

(d) Nexus 9

Figure 8: Estimated amount of power savings (accounting for GPU power consumption) with online backlight scaling under different

settings.

7. RELATED WORK
To effectively save the energy consumption on mobile devices

during Internet streaming, plenty of existing research has proposed

to reduce the power consumption during data receiving, video de-

coding, and video rendering. To reduce power consumed by the

wireless network interface card (WNIC) (WiFi or cellular) for re-

ceiving streaming data, many schemes have been proposed to put

the WNIC into the low power sleep mode for as long as possi-

ble. For example, BlueStreaming saves power by intelligently of-

floading frequent control traffic in P2P streaming to the low power

Bluetooth interface, allowing the WiFi interface to enter sleep

mode [21]. GreenTube is a system that carefully schedules video

downloading based on expected user viewing time and current

available bandwidth [18]. Instead of using a user’s local view his-

tory to calculate the expected viewing time as GreenTube, Hoque et

al. propose eSchedule that uses crowdsourced global video watch-

ing statistics for prediction [15]. To reduce power consumption

during video decoding, content providers transcode videos to the

resolution and format that best fit the decoding capabilities of mo-

bile devices [19].

To reduce power consumption of mobile displays, researchers

have focused on two types of displays: OLED and LCD. Since

the power consumption of OLED depends on the color of the pix-

els displayed, existing work mainly focuses on reducing power by

changing the color of displayed content. For example, Chameleon

is a mobile web browser that transforms a webpage’s color scheme

to a more power-efficient one on OLED displays [14]. FOCUS

saves power by darkening portions of the screen that is outside of

the user’s current region of interest (ROI) [28]. These schemes,

however, significantly change the visual content and are not ap-

plicable to videos. Shin et al. propose to apply dynamic voltage

scaling (DVS) on OLED displays [26]. However, special hardware

is required for this scheme to work. For LCD displays, as the back-

light consumes the majority of energy, backlight scaling has been

used to save power in many mobile video applications. For ex-

ample, Anand et al. propose to save display power consumption

in mobile gaming while maintaining perceived gameplay quality

by using backlight scaling with a tone mapping function available

from graphics engines [7]. Xiao et al. use backlight scaling to save

power in mobile video conferencing and leverage the GPU to per-

form pixel luminance enhancement [31]. Hsiu et al. and Lin et al.

propose to use backlight scaling in mobile video streaming by as-

signing a critical backlight level to every frame in a video [17, 20].

However, applying backlight scaling without luminance compen-

sation can adversely affect user-perceived video streaming quality.

Different from these schemes, GoCAD leverages the GPU to ef-

ficiently perform luminance compensation and can achieve much

better video streaming quality. Focusing on users’ quality of expe-

rience (QoE), Yan et al. conducted a field study to investigate how

reduced backlight affects QoE [32]. However, the authors did not

adopt luminance compensation in their QoE study.

8. CONCLUSION
Internet mobile streaming services are boosting due to the per-

vasive adoption of all kinds of mobile devices. However, Internet

mobile streaming is power-hungry while mobile devices are fun-

damentally constrained by the limited battery power. To reduce

the battery power consumption and prolong the battery lifetime, in

this work, we have designed and implemented a GPU-assisted On-

line Content-Adaptive Display (GoCAD) power saving mechanism

for reducing display power consumption on mobile devices in re-

ceiving Internet streaming services. GoCAD improves on previous

backlight scaling schemes by using the GPU instead of the CPU

for practical online luminance adjustment and a backlight scaling

algorithm that operates in an online manner over small batches of

video frames. When a storyboard is available, GoCAD can use it

to estimate the amount of power saved by the backlight scaling al-

gorithm. The GoCAD scheme’s efficiency is thus further improved

as backlight scaling is applied only on videos where power sav-

ings from backlight scaling outweights the additional GPU power

consumption needed to run the scheme. We have implemented Go-

CAD on Android and experimented with more than 460 randomly

selected YouTube videos. The results show that when backlight

scaling is computed online, GoCAD can effectively reduce power

consumption on mobile devices in receiving streaming services.

9. ACKNOWLEDGEMENT
We appreciate constructive comments from anonymous referees.

The work is partially supported by High-Tech Research and De-

velopment Program of China (“863 – China Cloud” Major Pro-

gram) under grant 2015AA01A201, by China NSF under grants

61432002 (State Key Program) and 61471217, by CCF-Tencent

Open Fund under grant IAGR20150101, and by NSF under grants

CNS-1117300 and CNS-1524462.

10. REFERENCES
[1] Color Conversion. http:

//www.equasys.de/colorconversion.html.

[2] Monsoon Power Monitor. http://www.msoon.com/

LabEquipment/PowerMonitor/.

[3] OpenMAX.

https://www.khronos.org/openmax/.

[4] RenderScript. http://developer.android.com/

guide/topics/renderscript/compute.html.

[5] YouTube player adds Netflix-like storyboard feature for

easier navigation.

http://venturebeat.com/2012/01/13/youtub

e-player-storyboard-thumbnail-feature/.

[6] YouTube Statistics. http://www.youtube.com/yt

/press/statistics.html.

[7] B. Anand, K. Thirugnanam, J. Sebastian, P. G. Kannan, A. L.

Ananda, M. C. Chan, and R. K. Balan. Adaptive display

power management for mobile games. In Proceedings of the

9th international conference on Mobile systems,

applications, and services, pages 57–70. ACM, 2011.

[8] A. Carroll and G. Heiser. An analysis of power consumption

in a smartphone. In Proceedings of the 2010 USENIX

conference on USENIX annual technical conference, pages

21–21, 2010.

[9] N. Chang, I. Choi, and H. Shim. Dls: dynamic backlight

luminance scaling of liquid crystal display. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on,

12(8):837–846, Aug 2004.

[10] L. Cheng, S. Mohapatra, M. El Zarki, N. Dutt, and

N. Venkatasubramanian. Quality-based backlight

optimization for video playback on handheld devices. Adv.

MultiMedia, 2007(1):4–4, Jan. 2007.

[11] W.-C. Cheng and M. Pedram. Power minimization in a

backlit tft-lcd display by concurrent brightness and contrast

scaling. Consumer Electronics, IEEE Transactions on,

50(1):25–32, 2004.

[12] H. Cho and O.-K. Kwon. A backlight dimming algorithm for

low power and high image quality lcd applications.

Consumer Electronics, IEEE Transactions on,

55(2):839–844, 2009.

[13] I. Choi, H. Shim, and N. Chang. Low-power color tft lcd

display for hand-held embedded systems. In Low Power

Electronics and Design, 2002. ISLPED ’02. Proceedings of

the 2002 International Symposium on, pages 112–117, 2002.

[14] M. Dong and L. Zhong. Chameleon: a color-adaptive web

browser for mobile oled displays. Mobile Computing, IEEE

Transactions on, 11(5):724–738, 2012.

[15] M. A. Hoque, M. Siekkinen, and J. K. Nurminen. Using

crowd-sourced viewing statistics to save energy in wireless

video streaming. In Proceedings of the 19th annual

international conference on Mobile computing &

networking, pages 377–388. ACM, 2013.

[16] M. A. Hoque, M. Siekkinen, J. K. Nurminen, and M. Aalto.

Dissecting mobile video services: An energy consumption

perspective. In World of Wireless, Mobile and Multimedia

Networks (WoWMoM), 2013 IEEE 14th International

Symposium and Workshops on a, pages 1–11. IEEE, 2013.

[17] P.-C. Hsiu, C.-H. Lin, and C.-K. Hsieh. Dynamic backlight

scaling optimization for mobile streaming applications. In

Proceedings of the 17th IEEE/ACM international symposium

on low-power electronics and design, pages 309–314, 2011.

[18] X. Li, M. Dong, Z. Ma, and F. C. Fernandes. Greentube:

power optimization for mobile videostreaming via dynamic

cache management. In Proceedings of the 20th ACM

international conference on Multimedia, pages 279–288.

ACM, 2012.

[19] Z. Li, Y. Huang, G. Liu, F. Wang, Z.-L. Zhang, and Y. Dai.

Cloud transcoder: Bridging the format and resolution gap

between internet videos and mobile devices. In Proceedings

of the 22nd international workshop on Network and

Operating System Support for Digital Audio and Video,

pages 33–38. ACM, 2012.

[20] C.-H. Lin, P.-C. Hsiu, and C.-K. Hsieh. Dynamic backlight

scaling optimization: A cloud-based energy-saving service

for mobile streaming applications. Computers, IEEE

Transactions on, 63(2), Feb 2014.

[21] Y. Liu, F. Li, L. Guo, Y. Guo, and S. Chen. Bluestreaming:

towards power-efficient internet p2p streaming to mobile

devices. In Proceedings of the 19th ACM international

conference on Multimedia, pages 193–202. ACM, 2011.

[22] Y. Liu, M. Xiao, M. Zhang, X. Li, M. Dong, Z. Ma, Z. Li,

and S. Chen. Content-adaptive display power saving in

internet mobile streaming. In Proceedings of the 25th ACM

Workshop on Network and Operating Systems Support for

Digital Audio and Video, pages 1–6. ACM, 2015.

[23] S. Pasricha, S. Mohapatra, M. Luthra, N. D. Dutt, and

N. Venkatasubramanian. Reducing backlight power

consumption for streaming video applications on mobile

handheld devices. In ESTImedia, pages 11–17, 2003.

[24] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and

W. Dabbous. Network characteristics of video streaming

traffic. In Proceedings of the Seventh COnference on

emerging Networking EXperiments and Technologies,

page 25. ACM, 2011.

[25] M. Ruggiero, A. Bartolini, and L. Benini. Dbs4video:

dynamic luminance backlight scaling based on

multi-histogram frame characterization for video streaming

application. In Proceedings of the 8th ACM international

conference on Embedded software, pages 109–118. ACM,

2008.

[26] D. Shin, Y. Kim, N. Chang, and M. Pedram. Dynamic

voltage scaling of oled displays. In Design Automation

Conference (DAC), 2011 48th ACM/EDAC/IEEE, pages

53–58. IEEE, 2011.

[27] T. Simunic, L. Benini, P. Glynn, and G. De Micheli.

Event-driven Power Management. Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on,

20(7):840–857, 2001.

[28] K. W. Tan, T. Okoshi, A. Misra, and R. K. Balan. Focus: a

usable & effective approach to oled display power

management. In Proceedings of the 2013 ACM international

joint conference on Pervasive and ubiquitous computing,

pages 573–582. ACM, 2013.

[29] P.-S. Tsai, C.-K. Liang, T.-H. Huang, and H. Chen. Image

enhancement for backlight-scaled tft-lcd displays. Circuits

and Systems for Video Technology, IEEE Transactions on,

19(4):574–583, 2009.

[30] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image quality assessment: from error visibility to structural

similarity. Image Processing, IEEE Transactions on,

13(4):600–612, 2004.

[31] M. Xiao, Y. Liu, L. Guo, and S. Chen. Reducing display

power consumption for real-time video calls on mobile

devices. In Low Power Electronics and Design (ISLPED),

2015 IEEE/ACM International Symposium on, pages

285–290. IEEE, 2015.

[32] Z. Yan, Q. Liu, T. Zhang, and C. W. Chen. Exploring qoe for

power efficiency: A field study on mobile videos with lcd

displays. In Proceedings of the 23rd Annual ACM

Conference on Multimedia Conference, pages 431–440.

ACM, 2015.

[33] J. Zhou, Y. Li, V. K. Adhikari, and Z.-L. Zhang. Counting

youtube videos via random prefix sampling. In Proceedings

of the 2011 ACM SIGCOMM conference on Internet

measurement conference, pages 371–380. ACM, 2011.

