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360-degree video is an emerging form of media that encodes information about all directions surrounding
a camera, offering an immersive experience to the users. Unlike traditional 2D videos, visual information
in 360-degree videos can be naturally represented as pixels on a sphere. Inspired by state-of-the-art deep-
learning-based 2D image super-resolution models and spherical CNNss, in this paper, we design a novel spherical
super-resolution (SSR) approach for 360-degree videos. To support viewport-adaptive and bandwidth-efficient
transmission/streaming of 360-degree video data and save computation, we propose the Focused Icosahedral
Mesh to represent a small area on the sphere. We further construct matrices to rotate spherical content over
the entire sphere to the focused mesh area, allowing us to use the focused mesh to represent any area on the
sphere. Motivated by the PixelShuffle operation for 2D super-resolution, we also propose a novel VertexShuffle
operation on the mesh and an improved version VertexShuffle_V2. We compare our SSR approach with
state-of-the-art 2D super-resolution models and show that SSR has the potential to achieve significant benefits
when applied to spherical signals.
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1 INTRODUCTION

360-degree image/video, also known as spherical image/video, is an emerging format of media that
captures views from all directions surrounding the camera. Unlike traditional 2D image/video that
limits the user’s view to wherever the camera is facing during capturing, a 360-degree image/video
allows the viewer to freely navigate a full omnidirectional scene around the camera position.
Despite its substantial promise of immersiveness, the utility of streaming/transmission of 360-
degree video is limited by the huge bandwidths required by most implementations. For example,
when watching a 360-degree video, users can only watch a small portion of the full omnidirectional
view. That is, while the 360-degree video encodes frames that cover the full 360° X 180° field-of-view
(FoV), the user may only observe a “view” (e.g., 100° X 100° FoV) of the omnidirectional frame
at a time. If the omnidirectional frame is projected to the 2D frame using the equirectangular
projection [4], then only roughly 15% of the pixels on the frame is viewed (assuming 100° X 100° FoV
and the center of the viewport is aligned with the equator of the equirectangular projection). The
rest 85% pixels are not viewed, resulting in significant bandwidth waste when streaming 360-degree
videos. To improve the bandwidth efficiency, a number of spatial adaptation approaches have been
proposed, e.g., [16, 24, 40, 41, 49, 54]. A core difficulty with such approaches involves predicting
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which portions of the 360-degree frame will be viewed by the user. If accurate predictions can be
made of the user’s behavior (a difficult task), then only the portions of the 360-degree frame to be
viewed need to be transmitted. When accurate prediction may not be possible, a “soft” version of
this family of approaches involves transmitting spatial portions of the 360-degree video at a level of
quality in proportion to the probability that they will be viewed [59]. These approaches, however,
can still suffer from difficulties, as there can be significant delays between the time that view
prediction is made and the time that spatial portions of the sphere are actually viewed, resulting in
inaccurate predictions [7].

A recent approach toward mitigating these types of mis-predictions involves applying super-
resolution (SR) to low-resolution video segments already present in the playback buffer, e.g., [11,
17, 52]. The super-resolution task reconstructs a high-resolution image/frame from low-resolution
input [27]. To date, many approaches for super-resolution over standard 2D images via deep convo-
lutional network have been proposed, e.g., [10, 18-20, 35, 36, 50, 57, 58]. However, a problem with
the current practice of 360-degree videos is the distortions caused by spherical-to-2D projections.
The omnidirectional views captured by 360-degree cameras are most naturally represented as
uniformly dense pixels over the surface of a sphere. When spherical pixels are projected to planar
surfaces, distortions are introduced. For example, the equirectangular projection [4] is a widely
used spherical projection for representing 360-degree data. However, significant distortions occur
around the north and south pole areas in the projection. Such distortions can reduce the efficiency of
convolutional neural network (CNN) operations by adding “over-represented” pixels, Further, train-
ing a CNN directly on the distorted representation could cause CNN models to learn characteristics
of the planar distortion rather than relevant details of the high resolution representation [6, 42].

Recent works on spherical CNNs [13, 28] perform convolutional operations directly on spherical
signals to avoid the distortion issue. These works show that it is possible to analyze spherical
signals directly without 2D projections. Furthermore, extensive experiments were conducted in
these works to show the efficiency of their proposed spherical CNNs.

In this paper, inspired by recent advances in spherical CNNs [13, 28] and state-of-the-art 2D
super-resolution methods [18-20, 50, 58], we propose a spherical super-resolution (SSR) approach
that operates on a direct, mesh representation of spherical pixels of 360-degree videos. First, we
propose an efficient mesh representation, the Focused Icosahedral Mesh, This representation both
makes our SR approach compatible with 360-degree spatial adaptation and improves memory
efficiency of the training and prediction steps of model operation compared to Full Icosahedral
Mesh. Second, motivated by the 2D PixelShuffle operation [47], we propose a novel VertexShuffle
operation. The VertexShuffle operation significantly increases both the visual quality metric (peak
signal-to-noise ratio (PSNR)) and improves inference time over comparable transposed convolution
operations.

An earlier version of this work was published at NOSSDAV’22 [33]. In this manuscript, we create
a new and improved operation, VertexShuffle_V2, for performing spherical super-resolution. Evalu-
ation results show that with the new VertexShuffle_V2 operation, our spherical super-resolution
approach can achieve 32.31 dB PSNR on average when super-resoluting 16x vertices on the mesh
created from 360-degree video inputs. We also conduct new performance evaluations using two
different training strategies: a “per segment” training strategy that trains a model for each video
segment, and a “full video” training strategy that trains a single model for one full video. We also
evaluated the performance our SSR approaches with baseline approaches in two different upscaling
factors, x4 and Xx8.

In summary, this paper makes the following main contributions:!

IThe repository for this project is available at https://github.com/symmru/SSR.
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e We create a Focused Icosahedral Mesh representation of the sphere to efficiently represent
spherical pixels in 360-degree videos. This representation not only saves computational
resources but also improves memory and storage efficiencies.

e We create a novel VertexShuffle operation, inspired by the 2D PixelShuffle [47] operation, and
an improved version VertexShuffle_V2. The vertex operation substantially increases both the
visual quality metric (peak signal-to-noise ratio (PSNR)) and inference time over comparable
transposed convolution operations.

o Results show that our proposed SSR model achieves great super-resolution performance on
360-degree video frame inputs, achieving 32.31 dB PSNR on average when super-resoluting
16x vertices (X4 upscaling factor) on the mesh and 30.11 dB PSNR on average with an even
higher X8 upscaling factor (64x vertices).

2 RELATED WORK
2.1 360-degree videos

With the advancement of AR/VR technologies, 360-degree videos have become increasingly popular
among content creators and users. Compared to traditional 2D videos that have a limited and
fixed field of view (FoV), 360-degree videos encodes information about all directions surrounding
a camera, allowing users to freely choose the viewport in any directions, providing immersive
viewing experiences. Visual information in 360-degree videos can be naturally represented as pixels
on a sphere. Today, existing systems leverage 2D video codecs (e.g., H.264 and HEVC) for 360-degree
video encoding by first projecting spherical pixels to 2D planar frames. Different sphere-to-2D
projections exist, such as the equirectangluar projection, standard cubic projection, equi-angular
cubic projection [2], and offset projections [1, 3, 59, 60].

Despite its potential for delivering more-immersive viewing experiences, current 360-degree
video implementations require bandwidths that are too high to deliver satisfying experiences
for many users. Numerous approaches have been proposed for improving 360-degree bandwidth
efficiency. These approaches have both attempted to improve the efficiency of how the 360-degree
view is represented during transmission, e.g., via a tiling approach [16, 23, 24, 40, 41, 43, 44, 49, 54, 55]
as well as improving a system’s ability to avoid delivering unviewed pixels [59, 61].

2.2 Spherical convolutional neural networks

Spherical CNN has been studied by the computer vision community recently as a number of real-
world applications require processing signals in the spherical domain. These applications include
self-driving cars, 360-degree videos, omnidirectional RGBD images, and climate science [28].
Recent works such as Cohen et al. [13] gave theoretical support of spherical CNNs for rotation-
invariant learning problems, which is important for problems where orientation is crucial to the
model performance. They first introduced the concepts of S? and SO(3). S? can be defined as the
set of points on a unit sphere, and SO(3) is the rotation group in Euclidean three dimensional space.
They replaced planar correlation with spherical correlation, which can be understood as the value
of output feature map evaluated at rotation R € SO(3) computed as an inner product between the
input feature map and a filter, rotated by R. Furthermore, they implemented the generalized Fourier
transform for S? and SO(3). Later, Cohen et al. [14] introduced a theory that is equi-variant to
symmetry transformations on manifolds. They further prompt a gauge equi-variant CNN for signals
on the icosahedron using the icosahedral CNN, which implements gauge equi-variant convolution
using a single conv2d call, making it a highly scalable and practical alternative to spherical CNNs.
Jiang et al. presented spherical CNNs on unstructured grids (UGSCNN) [28] using parameterized
differential operators for spherical signals. It introduces a basic convolution operation, called
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MeshConv, that can be applied on meshes directly. It achieves significantly better performance
and parameter efficiency compared to state-of-the-art network architectures for 3D classification
tasks since it does not require large amounts of geodetic computations and interpolations. Zhang
et al. [56] proposed to perform semantic segmentation on omnidirectional images by designing an
orientation-aware CNN framework for the icosahedron mesh. They introduced fast interpolation
of kernel convolutions and presented weight transfer from learned through classical CNNs to
perspective data. Eder et al. [21] proposed a spherical image representation that mitigates spherical
distortion by rendering a set of oriented, low-distortion images tangent to icosahedron faces. They
also presented the utilities of their approaches by applying standard CNN to the spherical data.
While these existing works demonstrate their effectiveness in classification and segmentation
tasks, the super-resolution task was not considered. In this work, we find it possible to apply their
work to the super-resolution task. Our work is based on the MeshConv operation proposed by
Jiang et al. [28] since it achieves better performance and parameter efficiency than other spherical
convolutional networks. We also conduct experiments to show significant improvements over the
baseline spherical super-resolution model that uses the simple MeshConv Transpose operation [28].

2.3 Super-resolution

Research in super-resolution has advanced rapidly with the success of recent deep learning models.
The SRCNN [18, 19] model was the first to apply CNNs to super-resolution. FSRCNN [20] was an
evolution of SRCNN. It operated directly on a low-resolution input image and applied a decon-
volution layer to generate the high-resolution output. VDSR [29] was the first to apply residual
layers [25] to the SR task, allowing for deeper SR networks. DRCN [30] introduced recursive learn-
ing in a very deep network for parameter sharing. Shi et al. [47] proposed “PixelShuffle”, a method
for mapping values at low-resolution positions directly to positions in a higher-resolution image
more efficiently than the deconvolution operation. SRResNet [32] introduced a modified residual
layer tailored for the SR application. An enhanced deep super-resolution network (EDSR) [37]
further modified the SR-specific residual layer from SSResNet and introduced a multi-task objective
in multi-scale deep super-resolution (MDSR) to support different upscaling factors in a single model.
SRGAN [32] applied a Generative Adversarial Network (GAN) [22] to SR, allowing better resolution
of high-frequency details. With the recent advances of the Transformer model [51], a number of
works [12, 36, 62] also adopt the Transformer model in super-resolution.

The above-mentioned works all focus on 2D planar images. However, due to the distortions
introduced in the sphere-to-2D projections, existing solutions may not be ideal for 360-degree
image super-resolution [6, 52]. In this work, we propose to a spherical super-resolution model that
directly operates on spherical signals so that we can avoid the distortion issue.

Focusing on optimizing 360-degree video streaming, Chen et al. [11] proposed to apply existing
2D super-resolution to 360-degree videos, training one model for each video. To avoid wasted
computation due to limited FoV, super-resolution is only applied to selected tiles. Dasari et al. [17]
proposed PARSEC that trains micro-models for video segments instead of the full video. Considering
the cloud-edge-client streaming scenario for 360-degree videos, Sarkar et al. proposed L3BOU [46]
that leverages the edge servers for low latency and low bandwidth streaming. To further reduce the
bandwidth requirement of 360-degree video streaming, Luo et al. proposed Masked360 [39] that only
needs to transmit masked frames instead of complete frames. Received frames are then restored
via an autoencoder and upsampled using super-resolution. To handle the distortion caused in
equirectangular projection of 360-degree images, Nishiyama et al. [42] proposed to use a distortion
map that stores per-pixel scaling factors as an additional input to the super-resolution model,
and S3PO [6] uses a spatial attention mechanism [53] to address the spatial distortion caused
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by the equirectangular projection. Unlike their works, we focus on designing a novel spherical
super-resolution approach for 360-degree images/videos.

3 METHODOLOGY

In this section, we first introduce Focused icosahedral mesh for representing a small area of the
sphere. We then illustrate the novel VertexShuffle operation after a brief discussion of the MeshConv
operation proposed by Jiang et al. [28]. Finally, we describe our model architecture and loss function
used in model training.

3.1 Focused Icosahedral Mesh

The icosahedral spherical mesh [8] is a discretization of the spherical surface. It starts with a unit
icosahedron (i.e., an icosahedron with all 12 vertices re-projected to the unit sphere). The icosahedral
spherical mesh can then be obtained by first selecting midpoints of all edges, progressively sub-
dividing each face of the unit icosahedron into four equal triangles by connecting 3 midpoints of
the face, and re-projecting the midpoints to the unit sphere.

Each time every face on the icosahedral spherical mesh is refined, the mesh size increases by ~4x.
When the full icosahedral spherical mesh is refined to a granularity that can include approximately
all pixels from a planar representation of a 360-degree video frame, operations would require a
significant amount of computation.

Furthermore, operations on the full mesh cannot easily support operations on sub-areas of
the spherical surface. Performing super-resolution on “sub-areas” of the spherical surface can
be beneficial for real-world 360-degree applications such as 360-degree video streaming. This is
because human eyes as well as their viewing devices (e.g., the head-mounted display) have limited
field-of-view (FoV), usually represented as the angular extent of the field that can be observed. To
render the view, only part of the sphere is required. Such “sub-areas” would be useful in “tiling-like”
schemes that can be used to support spatial-adaptive super-resolution over the 360-degree view.
(Note that the “tile” here is not necessarily a rectangular-shaped tile.) That is, if only a small
area on the sphere will be viewed by the user, we may only need to apply super-resolution to a
sub-portion of the sphere instead of the full sphere. As a result, performing super-resolution on the
full icosahedral mesh may no longer be necessary as it requires more computation resources for
areas that are not watched by users.

To support both faster operation and super-resolution on a sub-portion of the sphere, we propose
a partial refinement scheme to generate the “Focused Icosahedral Mesh”. We first create a Level-1
icosahedral mesh by refining each face on a unit icosahedron into 4 faces. In this way, the 20-face
icosahedron is refined into a Level-1 icosahedral mesh with 80 faces. An example full Level-1 mesh
with 80 faces is shown in Figure 1(a). We then select one face out of the 80 faces of the Level-1
icosahedral mesh and only refine triangles located inside the selected Level-1 face.

Specifically, in our focused mesh representation, we select the face of the Level-1 mesh that covers
the position of <latitude=0, longitude=0> on the sphere since very little distortion is introduced
when pixels near this area are projected to the 2D plane. Figure 1(b) shows the Focused Level-2
mesh where the selected Level-1 face is refined into 4 smaller faces. Figures 1(c) and 1(d) show the
Focused Level-3 and Focused Level-5 meshes, respectively.

3.1.1 Rotating content to the Focused Level-1 origin. While a full Level-1 mesh has 80 faces, we
only generate one single Focused icosahedral mesh by refining one selected face, and our spherical
super-resolution model only operates on this single Focused icosahedral mesh. To allow our model
to perform super-resolution for any area on the sphere, we thus need to map spherical pixel content
that belongs to any arbitrary full Level-1 mesh face to the face that is selected to be refined.
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(a) Full Level-1 Mesh (b) Focused Level-2 Mesh (c) Focused Level-3 Mesh  (d) Focused Level-5 Mesh

Fig. 1. Example of meshes in Level-1, Level-2, Level-3 and Level-5. To create “Focused icosahedral meshes”, we
select one face in the full Level-1 mesh and repeatedly refine triangles in this Level-1 face to obtain Focused
Level-X meshes.

To do so, we pre-compute a rotation matrix R € RNF*NvXC wwhere N represents the total

number of faces in a full Level-1 mesh, which is 80, and Ny is the number of vertices in a Level-1
face, as shown in Figure 1. A Level-1 mesh consists of 80 triangles, each containing 3 vertices. C
represents the number of dimensions of Euclidean coordinates in the sphere, namely xyz.

We denote the Level-1 face selected to be refined as face Fy. To rotate an arbitrary face F;, i € (0, 80)
on the Level-1 mesh to the refined face F,, we need to find a rotation matrix R; for face F; such that
F; = R; - Fy, where F; and F; are 3 X 3 matrices that represent the xyz coordinates of three vertices
of a triangle face.

We can obtain R; as: R; = F; - Fé_l). We first rotate the vertices in the Focused Level-X Mesh with
the rotation matrix R, and then compute a mapping from each pixel in the input representation
(e.g., an equirectangular image) to the rotated Focused Level-X vertex. Instead of refining all 80
faces in a mesh, in this way, we can represent all 80 different faces on the full Level-1 mesh through
a single Focused Mesh file with just one face refined and other faces discarded. This allows us to
save a significant amount of computation and storage resources and achieves better parameter
efficiency.

Figure 2 visualizes how one focused icosahedral mesh can be used to represent all 80 different
Level-1 faces. Figure 2(a) shows an original equirectangular-projected 360-degree image. In this
image, we highlight two areas marked by magenta circles. In Figure 2(b), the left-hand-side image
shows the Focused Level-9 mesh visualized on an equirectangular image. Magenta points in this
figure represent vertices in the full Level-1 mesh. There are 42 vertices in the full Level-1 mesh. The
right-hand-side image in Figure 2(b) magnifies the refined face in the Focused icosahedral mesh
to show details. We can see that content in this face are in the same position as in the original
equirectangular-projected image. Figure 2(c) shows the resulting visualization when we rotate a
different Level-1 face to the refined face. The image on the right magnifies the refined face to show
details.

3.1.2 Mesh sizes. Table 1 shows the number of vertices in both Full and Focused icosahedral
meshes in different levels of refinement. A Full Level-9 mesh has more than 2.6 million vertices and
requires more than 1.9 GB of space for memory during inference and storage. On the other hand, a
Focused Level-9 mesh has only about 33K vertices, requiring only about 31 MB memory storage
space.

We know that the area of a unit spherical surface is 4. A frame generated through the equirect-
angular projection covers a corresponding area of 27 X 7 = 272, (The circumference of the equator
is 27r.) Suppose there are N, vertices in the Full Level-X mesh, given that vertices on the icosa-
hedral mesh are roughly uniformly distributed on the sphere, we can estimate the equivalent 2D
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(a) This figure shows an equirectangular-projected 360-degree image. Ma-
genta circles, b and ¢, in this figure mark areas corresponding to two
different refined faces.(Original photo by Timothy Oldfield on Unsplash:
https://unsplash.com/photos/luufnHoChRU)

(b) The left-hand-side image displays the Focused Level-9 mesh visualized on an equirectangular image. The
right-hand-side image displays a magnified view of the refined face (circle b in figure (a)). In both images,
magenta points represent vertices in the full Level-1 mesh.

(c) This figure displays a different Level-1 icosahedral face (circle ¢ in figure (a)) rotated to the face refined
in the Focused Mesh. Pixel values from the original image are attached to rotated vertices by inverting the
rotation for positions of the mesh vertices then finding the nearest neighbor pixel of this rotated position.

Fig. 2. Visualizing the Focused Icosahedral mesh.
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Table 1. Number of vertices in Full icosahedral mesh, Focused icosahedral mesh, their corresponding memory
and storage sizes, and their roughly-equivalent 2D planar resolution in the equirectangular projection.

Level ‘ Level-6 Level-7 Level-8 Level-9
Full 40,962 (30 MB) 163,842 (118 MB) 655,362 (471 MB) 2,621,442 (1.9 GB)
Focused 600 (540 KB) 2,184 (20 MB) 8,424 (7.8 MB) 33,192 (31 MB)
2D planar ‘ 360x180 720x360 1440x720 2880x1440

equirectangular-projected frame resolution as follows: W = /N, x 7, H = W /2, where W and
H are the width and height of the equirectangular projection, respectively. The results are listed
in Table 1. We find that Level-6 mesh is roughly equivalent to the 2D equirectangular projection
in 360x180 resolution, and that Level-9 mesh is roughly equivalent to the 2D equirectangular
projection in 2880x1440 resolution.

3.2 MeshConv

The MeshConv operation introduced by Jiang et al. [28] is performed by taking a linear combina-
tion of linear operator values computed on a set of input mesh vertex values. MeshConv can be
formulated as follows:

MeshConv(F; 0) = OgIF + 01V 4 F + 05V pgF + 6;V2F, (1)

where I represents the identity, which can be regarded as the 0th order differential, same as V.
Viar and Vg are derivatives in two orthogonal spatial dimensions, which can be viewed as the 1st
order differential. V2 stands for the Laplacian operator, which can be considered as the 2nd order
differential.

At a high level, these linear operators can be viewed as computing a set of local information
near each vertex of the mesh. The standard 3 X 3 cross correlation operation can be viewed as a set
of nine linear operators. Each of the linear operators returns a value of either the pixel itself or an
adjacent pixel. Compared to the 3 X 3 convolution, it is clear that the set of four linear operators
used by MeshConv is less expressive. They not only extract less information per pixel, but this
information also can drop information about a vertex’s surrounding. For example, the gradient
operation on the mesh computes a 3-dimensional average of either six or seven values. Another
degree-of-freedom is dropped from the gradient when taking only the east-west and north-south
components of the gradient. We hypothesize that some of the information excluded from the linear
operator computations could be useful for the super-resolution task. To attempt to mitigate this
information loss, rather than including single MeshConv ops in the previous ResBlock architecture
used in transposed MeshConv, we include pairs of composed MeshConv ops (as shown in Figure
3 ResBlock depiction) in our model. These paired operations aggregate more local information
around a vertex before the non-linearity is applied, allowing the network to capture more useful
characteristics needed for the super-resolution task.

3.3 VertexShuffle

MeshConv Transpose. To upscale the downsampled low level mesh in semantic segmentation
task, UGSCNN [28] proposed a MeshConv Transpose operation. MeshConv Transpose takes Level-i
mesh for input and outputs a Level-(i + 1) mesh. It can be described as follows:

M;41 = MeshConv(Padding(M;)), (2)
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Fig. 3. Architecture of our proposed Spherical Super-Resolution (SSR) model that uses MeshConv and
VertexShuffle. L7 represent the input Level-7 mesh, and L9 represents the output Level-9 mesh.

where Padding represents zero padding, M;;; and M; are Level-(i + 1) mesh and Level-i mesh,
respectively. In general, MeshConv Transpose simply pads 0s on new vertices in Level-(i + 1) mesh,
then applies a regular MeshConv on the new zero-padded Level-(i + 1) mesh. While this operation
is easy to implement, as we will show in the Section 4, it is inefficient.

VertexShuffle. Motivated by PixelShuffle [47] commonly used in 2D super-resolution models,
we propose a novel VertexShuffle operation to use in our spherical super-resolution model. The
VertexShuffle operation can be described as follows:

M1 = VertexShuffle(M;) 3)
M; = Mgy, Mi1, Mz, M3 (3a)
N; = MidPoint(M( 1)), j € {0, 1,2} (3b)
N/ = concat(Njy, N/}, N};) (3¢)
N; = unique(N]) (3d)
VertexShuffle(M;) = concat(M;y, N;) (3e)

The input of our basic VertexShuffle operation can be represented as M; € RF*Vi, where F is the
feature dimension in Level-i, and V; represents the number of vertices of Level-i mesh. The output
is My, € RF "XVis1_where F’ is the feature dimension in Level-(i + 1), which is F/4 in our work, and
Vi1 represents the number of vertices of the Level-(i + 1) mesh.

We first split M; into four parts {M;o, M1, Mz, M3} along feature map dimension, where M;; €
RF/XVi,j ={0,1,2,3} and F’ = F/4. We keep M;, as our Level-i mesh features, which will be used
later. M;1, M;s, M3 are used to refine features of vertices in Level-(i + 1) mesh.

As we introduced before, a spherical mesh can be obtained by progressively sub-dividing each
face of the unit icosahedron into four equal triangles. Here, we treat a single triangle face as
a sequence of vertices, vy, v1,v; and a sequence of edges (v, v1), (v1,02), (v2, 09). The refinement
process can be regarded as progressively constructing midpoint vertex on associated edges, and
new edges in Level-(i + 1) are created between each pair of midpoint vertices, thus a single face in
Level-i is refined into four new faces in Level-(i + 1).

To fully make use of feature maps in Level-i, we use M, Mjs, Mj3 to refine vertices in Level-
(i + 1) mesh. Specifically, we use M;; to calculate midpoint between (vy,v1), Mj; to calculate
midpoint between (v1,v;), and M;3 to calculate midpoint between (vy, vy). Midpoint vertex values
are constructed by averaging the values associated with the original two vertices on an edge. Thus,
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Equation (3b) can be described as follows:

Ni,O = MldPOlnt(Mll) = (Mil (Uo) + Mil (vl))/2 (4a)
Ni/l = MldPOll’lt(Mlz) = (MiZ (01) + Miz(l)z))/z (4b)
Ni/Z = MldPOll’lt(Mlg) = (Mi3 (02) + Mig(l)o))/z (40)

Thus, we can get a set of midpoint vertices N, which are new vertices generated in Level-(i + 1)
mesh. However, there exist redundant midpoints due to the shared edges that may be calculated
twice. We have to perform deduplication on the set of midpoint vertices. Here, we simply select the
first instance of a midpoint. Then, we have a set of unique midpoint vertices that are used to refine
the next level mesh N; € R *4i where A; = Viyy — Vi. Finally, we concatenate partial feature map
in Level-i, My, with the new calculated midpoint vertices N; to create our Level-(i + 1) mesh.

Compared to MeshConv Transpose, VertexShuffle does not have extra learnable parameters.
Thus, our implementation of VertexShuffle is not only more parameters-efficient, but also achieves
significantly better performance. The evaluation results are presented in Section 4.

3.4 VertexShuffle_V2

The super-resolution performance depends on how features of refined midpoints are generated.
In this section, we describe a new approach we design for calculating features of vertices in the
Level-(i + 1) mesh using feature maps in Level-i, i.e., {Mj, Mj1, Miz, Mi3}.

We refer to this new approach as VertexShuffle_V2. We note that compared to the original Ver-
texShuffle operation, VertexShuffle_V2 can improve the performance without requiring additional
parameters.

As before, the input of our basic VertexShuffle operation can be represented as M; € RF*Vi, where
F is the feature dimension in Level-i, and V; is the number of vertices of Level-i mesh. The output
is My q € RE Vi M, s split into four parts {M;o, M;1, M;2, M3} along the feature map dimension.
The new VertexShuffle_V2 operation can be described as follows:

M;,q = VertexShuffle_V2(M;) (5)
M; = Mio, Mi1, Miz, M3 (5a)
M; = (Mo + M) /2 (5b)
Li = (M + My3)/2 (5¢)
N/, = MidPoint . (L;) (5d)
N/ = concat(Ny;, Ni5, Nyg) (5e)
N; = unique(Ny) (5f)
VertexShuffle_V2(M;) = concat(M;, N;) (5g)

Unlike Equation (3e) that directly uses M as part of the mesh feature representation, we use
the mean of these first two feature maps in level i, i.e., {M;o, M;; } of our Level-i mesh, as shown
in Equation (5g). We then compute the mean of the remaining two feature maps, {M;z, Mj3}, to
refine new vertices in Level-(i + 1) mesh. In this way, with VertexShuffle_V2, features of vertices in
the refined Level-(i + 1) mesh are calculated using two feature maps in level i instead of just one
as in VertexShuffle. Specifically, we calculate the mean value between M;,, M;3 as L; and use it to
calculate the midpoints between (v, v1), (v1,02), (v2, vp). Midpoint vertex values are constructed
by averaging the values associated with the original two vertices on a edge. Equation (5d) can be
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described as follows:

Ny, = MidPointy; (L;) = (L;(vo) + Li(01))/2 (6a)
N1’2 = MidPOil’ltlz(Li) = (Li(l)]) + Li(Uz))/Z (Gb)
Ny = MidPointyo(L;) = (L;(vz) + Li(v0))/2 (6¢)

We perform deduplication via the same approach as Equation (3d) to obtain a set of unique midpoint
vertices that can be used to refine the next level mesh, i.e., N; € RF "XAi We then concatenate them
with the averaged partial feature map in Level-i, M}, to create our new Level-(i + 1) mesh. We find
that the performance of VertexShuffle_V2 improves over the original VertexShuffle method, while
without introducing additional parameters.

3.5 Model architecture

We apply our Focused icosahedral mesh and VertexShuffle operation in the super-resolution task.
The architecture of our spherical super-resolution (SSR) model is shown in Figure 3. In this figure,
we show the input of our model as a Level-7 Focused icosahedral mesh, it first goes through a
MeshConv layer with Batch Normalization [26] followed by a ReLU activation function. Then,
we use two adapted Residual Blocks [25] to further extract features. The adapted residual blocks
include two MeshConv layers (as discussed in Section 3.2). We concatenate the output of the first
MeshConv and the output from the two ResBlocks by element-wise addition. After that, we use
two VertexShuffle layers to upscale feature maps. Finally, our model ends up with a MeshConv
layer, generating a Level-9 Focused icosahedral mesh with the correct number of channels.

3.6 Loss function

Similar to general super-resolution tasks, our goal is to minimize the loss between the reconstructed
images Y; and the corresponding ground truth high-resolution images H;. Given a set of high-
resolution images H; and their corresponding low-resolution images X;, we represent the loss as
follows:

N
1
MSE=g ;(Hi - Y;)% where Y; = F(X;) )
Loss = 10 X log,,(MSE) 3)

where N is the number of training samples. The loss function is the negative peak signal-to-noise
ratio(PSNR), which aligns with our task to maximize the PSNR.

4 EVALUATION
4.1 Dataset

For evaluation, we used a publicly-available 360-degree video dataset [15]. This dataset contains 5
videos of 4K quality at the frame rate of 30 frames-per-second (fps). To use our Focused Icosahedral
Mesh in training, for each frame in a video segment or a video (we describe a “per segment” and
a “full video” training strategy in Section 4.2), we train for all 80 Level-1 faces. As discussed, the
refined Level-1 face is selected as a face located on the equator to avoid distortion near pole areas.
Contents on the remaining 79 faces are rotated to the refined Level-1 face during training and
inference. We note that for our super-resolution tasks, the model is expected to overfit frames in
the specific video segment or full video it is trained on. That is, the training data and the testing
data are the same set of video frames.
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4.2 Training Strategies

To evaluate the super-resolution performance in different scenarios, we consider 2 different upscal-
ing factors in our experiments, X4 and X8. For upscaling factor x4, the number of output vertices
is ~16x the number of input vertices. In this setting, the low-resolution input data is in Level-7,
which is roughly equivalent to a 2D equirectangular-projected frame in 720x360 resolution. The
high-resolution target data is in Level-9, which is roughly equivalent to 2880x1440 equirectangular-
projected frames. For X8, the number of output vertices is ~64x the number of input vertices. With
%8, we use Level-6 mesh as input data, roughly equivalent to a 2D equirectangular frame in 360x180
resolution, and the high-resolution data is in Level-9.

We consider two real-world usage scenarios that correspond to two different training strategies.
The first one is the “per segment” training strategy. In this case, we train a different super-
resolution model for each video segment that is used in DASH-based video streaming. To setup the
experiments for this scenario, for each video in the dataset, we use FFmpeg [5] to divide the full
video temporally into segments of 1-second long each. For each segment, we train a super-resolution
model for the 30 frames it contains. For each video in the dataset, we train the first video segment
for 40 epochs, while for the remaining video segments, we take advantage of temporal locality
of videos. That is, video frames that are close together temporally may be similar. We thus use a
previous video segment’s model as a pre-trained model to initialize parameters in the model for
the current segment. This allows us to pursue training efficiency by training each video segment
for only 15 epochs.

In addition, we consider the “full video” training strategy, where we can train a single model
for an entire video. This strategy allows us to save the storage and network bandwidth for storing
and transmitting models. For example, with per-segment training, we have to store and stream 60
models for a single 1-minute long video, while only one model is sufficient for the whole-video
training strategy. A potential drawback of this approach, however, is that the quality of super-
resolved frames may not be as high as the “per-segment” training strategy as the model is not
fine-turned on each individual segment.

For both scenarios, we set the learning rate to 0.01 and use Adam [31] as our optimizer. We
conducted our experiments on a desktop machine with Intel(R) Core(TM) i7-8700K CPU and
GeForce RTX 2080 Ti GPU.

4.3 Baseline Models

We train models for all videos in the dataset using our proposed spherical super-resolution (SSR)
model and compare its results with three baseline models: 2D super-resolution with Upsample,
2D super-resolution with PixelShuffle, and spherical super-resolution with transposed MeshConv
(i-e., instead of VertexShuffle). The model architecture for transposed MeshConv is similar to our
spherical super-resolution (SSR) model with the exception that it only has one MeshConv layer in
its residual block. This is consistent with the original residual block used in Jiang [28]. The model
architecture for the 2D baseline models are compatible with our spherical super-resolution (SSR)
model: residual blocks in 2D models consist of two Conv2d operations. Our baseline models are all
trained from scratch.

We focus our comparison on three aspects: visual quality (i.e., the PSNR value), model size, and
inference time. For 2D baseline models, we tile the frames spatially into small patches. For example,
in the Level-7 to Level-9 super-resolution experiments with upscaling factor x4, we use the patch
size of 45 X 45 pixels for input data, and thus, 180 X 180 pixels for output and target data. The
upscaling factor is x4, which is the same as our SSR model. Given that the Level-7 mesh is roughly
equivalent to a 2D equirectangular-projected frame in 720x360 resolution, the total number of
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Table 2. PSNR (dB) results for all 5 videos using the per segment training strategy with upscale factor X4 in
our testing dataset. Each segment is 1 second long.

Model ‘ Diving Timelapse Venice Paris Rollercoaster ‘ Average
2D with Upsample 30.34 31.75 35.90  28.00 25.31 30.26
2D with PixelShuffle 33.42 34.13 40.07 32.45 33.62 34.74
Spherical: MeshConv with transposed MeshConv 31.50 30.27 38.28  26.64 28.14 30.97
Spherical: MeshConv with VertexShuffle (SSR) 33.20 32.06 33.72  28.90 31.99 31.97
Spherical: MeshConv with VertexShuffle_V2 (SSR2) | 33.53 31.76 3438 2894 32.96 32.31

Table 3. PSNR (dB) results for all 5 videos using the full video training strategy with upscaling factor x4 in
our testing dataset. The length of each video (in seconds) is shown in the second row of the table.

Model Diving Timelapse Venice Paris Rollercoaster | Average
61s 74s 80s 55s 61s

2D with Upsample 30.08 30.31 33.76  30.95 23.13 29.65

2D with PixelShuffle 30.38 30.71 37.92 31.29 29.84 32.03

Spherical: MeshConv with transposed MeshConv 31.63 29.75 3581  26.82 29.11 30.62

Spherical: MeshConv with VertexShuffle_V2 (SSR2) | 34.38 31.69 33.87 29.22 33.50 32.53

Table 4. PSNR (dB) results for all 5 videos using the full video training strategy with upscaling factor X8 in
our testing dataset.

Model ‘ Diving Timelapse Venice Paris Rollercoaster ‘ Average
2D with Upsample 25.72 25.02 3094 24.15 16.25 24.42
2D with PixelShuffle 29.77 29.04 40.10 30.84 27.25 31.40
Spherical: MeshConv with VertexShuffle V2 (SSR2) | 31.93 28.67 3132  28.44 30.20 30.11

patches is 16 X 8 = 128. For the Level-6 to Level-9 experiments, since the 2D equivalent input frame
resolution is 360x180, the total number of patches is 8 X 4 = 32 using the same 45 X 45 patch size.

4.4 PSNR Results

Per segment training with upscaling factor x4. The mean PSNR values obtained by all models
for each video using the per segment training strategy with upscaling factor X4 are shown in
Table 2. 2D baseline model with PixelShuffle achieves the best PSNR value because of the efficiency
of 2D convolution. Compared to the spherical baseline model that uses transposed MeshConv
operation, our SSR model achieves better results for 4 out of 5 videos as well as on average. This
shows the improvement of our new VertexShuffle operation. In addition, the results also show that
our new VertexShuffle_V2 operation (shown as SSR2) outperforms SSR for all but one videos. This
shows that calculating features of refined midpoint vertices by using more than one feature maps
can achieve improved performance compared to using only one feature map for each vertex.

Full video training with upscaling factor x4. For the full video training strategy, as only one
model is learned for the entire video (e.g., over 60 seconds long), the super-resolution performance
degrades for many videos and models. The PSNR results for each video are shown in Table 3.
The second row in the table shows the length of each video in the dataset. Results show that
our SSR2 model performs the best among all models for 3 out of 5 videos and achieves the best
average performance. It is also worth noting that SSR2’s performance with full video training is
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Table 5. Comparison of total number of model parameters, model storage size, and per-frame inference time.

Model ‘ Total # of Parameters ‘ Storage Size ‘ Per-frame Inference Time
2D with Upsample 86,163 343 KB 23.39 ms
2D with PixelShuffle 84,948 338 KB 13.54 ms
Spherical: MeshConv with transposed MeshConv 64,265 273 KB 997.91 ms
Spherical: MeshConv with VertexShuffle (SSR) 79,925 333 KB 74.35 ms

comparable to per segment training. Given that only one model is trained for the full duration of
the video, this indicates SSR2 can substantially save the storage size and network bandwidth for
transmitting the super-resolution models.

Full video training with upscaling factor x8. With a higher upscaling factor of X8, it is more
challenging to perform super-resolution. The mean PSNR results obtained for each video with full
video training strategy are shown in Table 4. We were unable to complete the experiments for the
“Spherical: MeshConv with transposed MeshConv” baseline model due to its inefficiency. We thus
do not show the results for this baseline model.

Results show that the performance of our SSR2 model is still comparable to the 2D baseline
model with PixelShuffle. We note that the performance gain of “2D with PixelShuffle” is mainly
due to the “Venice” video. For the remaining four videos, on average, our SSR2 model outperforms
the 2D PixelShuffle model with an average PSNR of 29.81 dB (SSR2) vs. 29.23 dB (2D PixelShulffle).

4.5 Model Parameters, Storage Sizes, and Inference Time

Table 5 shows the total number of parameters of all models and their corresponding storage sizes.
The spherical baseline model with transposed MeshConv operations used as one of our baseline
models has a smaller model size due to the fewer MeshConv layers in its residual block. However,
its inference time is significantly longer than all other models. The numbers for the SSR2 model is
the same as SSR, and we omit them from the table.

In our spherical models, we divide the original omnidirectional frame into 80 faces. In 2D baseline
models, the number of tiled patches, however, is different from the number of faces (128 patches
for the X4 scenario and 32 for the X8 scenario). Thus, it is not fair to simply compare the inference
time for each face or tile/patch. Instead, we use the per-frame inference time for comparison. The
experiment results are shown in Table 5. 2D baseline models have the fastest inference time. Our
SSR model is slower than 2D baseline models but significantly faster than the spherical baseline
with transposed MeshConv operations. The speed of 2D models can be attributed to the efficient
cuDNN library that the PyTorch 2D convolution operation uses. On the other hand, our SSR model
is implemented based on the PyTorch library only. In addition, given that a user will only watch a
sub-portion of the spherical frame in real scenarios, we do not need to perform super-resolution
for all 80 faces of a frame. This indicates our SSR model can be performed in real-time to meet the
30 fps frame rate required by most videos.

5 CONCLUSION

In this paper, we proposed a spherical super-resolution model — SSR. SSR directly operates on
spherical signals, which can avoid issues in applying 2D super-resolution to spherical data, such as
distortion, oversampled pixels, etc. We created a memory- and bandwidth-efficient representation
of the spherical mesh — the Focused Icosahedral Mesh, which is more flexible than full meshes and
saves a significant amount of computation resources. We created a novel VertexShuffle operation,
inspired by the PixelShuffle operation for 2D super-resolution, and an improved VertexShuffle_V2
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operation to further improve our model. We conducted comprehensive experiments on our SSR
with two different training strategies and two upscaling factors, X4 and x8. Results show that our
model outperforms other baseline models in most videos.

6 FUTURE WORK

In this work, we treated frames in the 360-degree videos as standalone frames without considering
their inherent relationships. In the future, we plan to consider adding temporal information across
frames, based on works such as [6, 9, 38, 48]. For example, we can take motion vector into consid-
eration to capture the temporal information [34, 45]. We also plan to deploy SSR and VertexShuffle
operations in real-world scenarios for real-time 360-degree video super-resolution.

ACKNOWLEDGMENTS

We appreciate constructive comments from anonymous referees. This work is partially supported
by NSF under grants CNS-2200042 and CNS-2200048.

REFERENCES

[1] 2016. Next-generation video encoding techniques for 360 video and VR. https://code.facebook.com/posts/

1126354007399553/next- generation-video-encoding-techniques-for-360-video-and-vr/.

[2] 2017. EAC. https://blog.google/products/google-ar-vr/bringing-pixels-front-and- center-vr-video/.

[3] 2017. End-to-end optimizations for dynamic streaming. https://code.facebook.com/posts/637561796428084/end-to-

end-optimizations-for-dynamic-streaming/.

2022. Equirectangular Projection. http://mathworld.wolfram.com/EquirectangularProjection.html.

2022. FFmpeg. http://www.fimpeg.org/.

Arbind Agrahari Baniya, Tsz-Kwan Lee, Peter W Eklund, and Sunil Aryal. 2023. Omnidirectional Video Super-Resolution

using Deep Learning. IEEE Transactions on Multimedia (2023).

[7] Yanan Bao, Huasen Wu, Tianxiao Zhang, Albara Ah Ramli, and Xin Liu. 2016. Shooting a moving target: Motion-
prediction-based transmission for 360-degree videos. In 2016 IEEE International Conference on Big Data (Big Data).
IEEE, 1161-1170.

[8] John R Baumgardner and Paul O Frederickson. 1985. Icosahedral discretization of the two-sphere. SIAM . Numer.
Anal. 22, 6 (1985), 1107-1115.

[9] Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro Acosta, Johannes Totz, Zehan Wang, and Wenzhe Shi. 2017.
Real-time video super-resolution with spatio-temporal networks and motion compensation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 4778-4787.

[10] Mingdeng Cao, Chong Mou, Fanghua Yu, Xintao Wang, Yinqiang Zheng, Jian Zhang, Chao Dong, Gen Li, Ying Shan,
Radu Timofte, et al. 2023. NTIRE 2023 Challenge on 360deg Omnidirectional Image and Video Super-Resolution:
Datasets, Methods and Results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
1731-1745.

[11] Jiawen Chen, Miao Hu, Zhenxiao Luo, Zelong Wang, and Di Wu. 2020. SR360: boosting 360-degree video streaming
with super-resolution. In Proceedings of the 30th ACM Workshop on Network and Operating Systems Support for Digital
Audio and Video. 1-6.

[12] Zheng Chen, Yulun Zhang, Jinjin Gu, Linghe Kong, Xiaokang Yang, and Fisher Yu. 2023. Dual aggregation transformer
for image super-resolution. In Proceedings of the IEEE/CVF international conference on computer vision. 12312-12321.

[13] Taco Cohen, Mario Geiger, Jonas Kohler, and Max Welling. 2017. Convolutional networks for spherical signals. arXiv
preprint arXiv:1709.04893 (2017).

[14] Taco S Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. 2019. Gauge equivariant convolutional networks
and the icosahedral cnn. arXiv preprint arXiv:1902.04615 (2019).

[15] Xavier Corbillon, Francesca De Simone, and Gwendal Simon. 2017. 360-degree video head movement dataset. In
Proceedings of the 8th ACM on Multimedia Systems Conference. 199-204.

[16] Xavier Corbillon, Gwendal Simon, Alisa Devlic, and Jacob Chakareski. 2017. Viewport-adaptive navigable 360-degree
video delivery. In Communications (ICC), 2017 IEEE International Conference on. IEEE, 1-7.

[17] Mallesham Dasari, Arani Bhattacharya, Santiago Vargas, Pranjal Sahu, Aruna Balasubramanian, and Samir R Das.
2020. Streaming 360-degree videos using super-resolution. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications. IEEE, 1977-1986.

—

—_ ——
AN U1 W
—

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2024.


https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://blog.google/products/google-ar-vr/bringing-pixels-front-and-center-vr-video/
 https://code.facebook.com/posts/637561796428084/end-to-end-optimizations-for-dynamic-streaming/
 https://code.facebook.com/posts/637561796428084/end-to-end-optimizations-for-dynamic-streaming/
http://mathworld.wolfram.com/EquirectangularProjection.html
http://www.ffmpeg.org/

[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]
[26]
[27]
[28]
[29]
[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Na Li and Yao Liu

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2014. Learning a deep convolutional network for image
super-resolution. In European conference on computer vision. Springer, 184-199.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2015. Image super-resolution using deep convolutional
networks. IEEE transactions on pattern analysis and machine intelligence 38, 2 (2015), 295-307.

Chao Dong, Chen Change Loy, and Xiaoou Tang. 2016. Accelerating the super-resolution convolutional neural network.
In European conference on computer vision. Springer, 391-407.

Marc Eder, Mykhailo Shvets, John Lim, and Jan-Michael Frahm. 2020. Tangent Images for Mitigating Spherical
Distortion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12426~12434.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. 2014. Generative adversarial nets. In Advances in neural information processing systems. 2672-2680.
Mario Graf, Christian Timmerer, and Christopher Mueller. 2017. Towards Bandwidth Efficient Adaptive Streaming
of Omnidirectional Video over HTTP: Design, Implementation, and Evaluation. In Proceedings of the 8th ACM on
Multimedia Systems Conference. ACM, 261-271.

Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming Guo, and Junchen Jiang. 2019. Pano: Optimizing 360 video
streaming with a better understanding of quality perception. In Proceedings of the ACM Special Interest Group on Data
Communication. 394-407.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition. 770~778.

Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167 (2015).

Michal Irani and Shmuel Peleg. 1991. Improving resolution by image registration. CVGIP: Graphical models and image
processing 53, 3 (1991), 231-239.

Chiyu Jiang, Jingwei Huang, Karthik Kashinath, Philip Marcus, Matthias Niessner, et al. 2019. Spherical cnns on
unstructured grids. arXiv preprint arXiv:1901.02039 (2019).

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. 2016. Accurate image super-resolution using very deep convolutional
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 1646-1654.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. 2016. Deeply-recursive convolutional network for image super-
resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition. 1637-1645.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. 2017. Photo-realistic single image super-resolution using a generative
adversarial network. In Proceedings of the IEEE conference on computer vision and pattern recognition. 4681-4690.

Na Li and Yao Liu. 2022. Applying VertexShuffle toward 360-degree video super-resolution. In Proceedings of the 32nd
Workshop on Network and Operating Systems Support for Digital Audio and Video. 71-77.

Sheng Li, Fengxiang He, Bo Du, Lefei Zhang, Yonghao Xu, and Dacheng Tao. 2019. Fast spatio-temporal residual
network for video super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
10522-10531.

Zheyuan Li, Yingqi Liu, Xiangyu Chen, Haoming Cai, Jinjin Gu, Yu Qiao, and Chao Dong. 2022. Blueprint separable
residual network for efficient image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 833-843.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. 2021. Swinir: Image restoration
using swin transformer. In Proceedings of the IEEE/CVF international conference on computer vision. 1833-1844.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. 2017. Enhanced deep residual networks
for single image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition
workshops. 136-144.

Ding Liu, Zhaowen Wang, Yuchen Fan, Xianming Liu, Zhangyang Wang, Shiyu Chang, and Thomas Huang. 2017.
Robust video super-resolution with learned temporal dynamics. In Proceedings of the IEEE International Conference on
Computer Vision. 2507-2515.

Zhenxiao Luo, Baili Chai, Zelong Wang, Miao Hu, and Di Wu. 2023. Masked360: Enabling Robust 360-degree Video
Streaming with Ultra Low Bandwidth Consumption. IEEE Transactions on Visualization and Computer Graphics 29, 5
(2023), 2690-2699.

Anahita Mahzari, Afshin Taghavi Nasrabadi, Aliehsan Samiei, and Ravi Prakash. 2018. FoV-Aware Edge Caching for
Adaptive 360A° Video Streaming. In 2018 ACM Multimedia Conference on Multimedia Conference. ACM, 173-181.
Afshin Taghavi Nasrabadi, Anahita Mahzari, Joseph D Beshay, and Ravi Prakash. 2017. Adaptive 360-degree video
streaming using scalable video coding. In Proceedings of the 2017 ACM on Multimedia Conference. ACM, 1689-1697.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2024.



VertexShuffle-Based Spherical Super-Resolution for 360-Degree Videos 1:17

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]
[57]
[58]
[59]

[60]

[61]

[62]

Akito Nishiyama, Satoshi Ikehata, and Kiyoharu Aizawa. 2021. 360 single image super resolution via distortion-aware
network and distorted perspective images. In 2021 IEEE International Conference on Image Processing (ICIP). IEEE,
1829-1833.

Stefano Petrangeli, Viswanathan Swaminathan, Mohammad Hosseini, and Filip De Turck. 2017. An HTTP/2-Based
Adaptive Streaming Framework for 360 Virtual Reality Videos. In Proceedings of the 2017 ACM on Multimedia Conference.
ACM,, 306-314.

Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018. Flare: Practical Viewport-Adaptive 360-Degree
Video Streaming for Mobile Devices. In Proceedings of the 24th Annual International Conference on Mobile Computing
and Networking. ACM, 99-114.

Mehdi SM Sajjadi, Raviteja Vemulapalli, and Matthew Brown. 2018. Frame-recurrent video super-resolution. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 6626—6634.

Ayush Sarkar, John Murray, Mallesham Dasari, Michael Zink, and Klara Nahrstedt. 2021. L3BOU: Low Latency,
Low Bandwidth, Optimized Super-Resolution Backhaul for 360-Degree Video Streaming. In 2021 IEEE International
Symposium on Multimedia (ISM). IEEE, 138-147.

Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. 2016. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural
network. In Proceedings of the IEEE conference on computer vision and pattern recognition. 1874-1883.

Yuki Shiba, Satoshi Ono, Ryo Furukawa, Shinsaku Hiura, and Hiroshi Kawasaki. 2017. Temporal shape super-resolution
by intra-frame motion encoding using high-fps structured light. In Proceedings of the IEEE International Conference on
Computer Vision. 115-123.

Liyang Sun, Fanyi Duanmu, Yong Liu, Yao Wang, Yinghua Ye, Hang Shi, and David Dai. 2018. Multi-path multi-tier
360-degree video streaming in 5G networks. In Proceedings of the 9th ACM Multimedia Systems Conference. ACM,
162-173.

Ying Tai, Jian Yang, and Xiaoming Liu. 2017. Image super-resolution via deep recursive residual network. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 3147-3155.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).

Xiaoyan Wang, Tho Duc Nguyen, Chanh Minh Tran, Eiji Kamioka, and Tan Xuan Phan. 2023. Central Vision based
Super-resolution for 360-Degree Videos. In Proceedings of the 2023 7th International Conference on Big Data and Internet
of Things. 34-39.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. 2018. Cbam: Convolutional block attention module.
In Proceedings of the European conference on computer vision (ECCV). 3-19.

Lan Xie, Zhimin Xu, Yixuan Ban, Xinggong Zhang, and Zongming Guo. 2017. 360ProbDASH: Improving QoE of 360
Video Streaming Using Tile-based HTTP Adaptive Streaming. In Proceedings of the 2017 ACM on Multimedia Conference.
ACM, 315-323.

Alireza Zare, Alireza Aminlou, Miska M Hannuksela, and Moncef Gabbouj. 2016. HEVC-compliant tile-based streaming
of panoramic video for virtual reality applications. In Proceedings of the 2016 ACM on Multimedia Conference. ACM,
601-605.

Chao Zhang, Stephan Liwicki, William Smith, and Roberto Cipolla. 2019. Orientation-aware semantic segmentation
on icosahedron spheres. In Proceedings of the IEEE International Conference on Computer Vision. 3533-3541.

Xindong Zhang, Hui Zeng, Shi Guo, and Lei Zhang. 2022. Efficient long-range attention network for image super-
resolution. In European Conference on Computer Vision. Springer, 649-667.

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. 2018. Residual dense network for image super-
resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2472-2481.

Chao Zhou, Zhenhua Li, and Yao Liu. 2017. A measurement study of oculus 360 degree video streaming. In Proceedings
of the 8th ACM on Multimedia Systems Conference. ACM, 27-37.

Chao Zhou, Zhenhua Li, Joe Osgood, and Yao Liu. 2018. On the effectiveness of offset projections for 360-degree video
streaming. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) 14, 3s (2018),
1-24.

Chao Zhou, Shuoqian Wang, Mengbai Xiao, Sheng Wei, and Yao Liu. 2020. Adap-360: User-adaptive area-of-focus
projections for bandwidth-efficient 360-degree video streaming. In Proceedings of the 28th ACM International Conference
on Multimedia. 3715-3723.

Yupeng Zhou, Zhen Li, Chun-Le Guo, Song Bai, Ming-Ming Cheng, and Qibin Hou. 2023. SRFormer: Permuted
Self-Attention for Single Image Super-Resolution. arXiv preprint arXiv:2303.09735 (2023).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2024.



	Abstract
	1 Introduction
	2 Related Work
	2.1 360-degree videos
	2.2 Spherical convolutional neural networks
	2.3 Super-resolution

	3 Methodology
	3.1 Focused Icosahedral Mesh
	3.2 MeshConv
	3.3 VertexShuffle
	3.4 VertexShuffle_V2
	3.5 Model architecture
	3.6 Loss function

	4 Evaluation
	4.1 Dataset
	4.2 Training Strategies
	4.3 Baseline Models
	4.4 PSNR Results
	4.5 Model Parameters, Storage Sizes, and Inference Time

	5 Conclusion
	6 Future Work
	Acknowledgments
	References

