
1

Investigating Redundant Internet Video Streaming

Traffic on iOS Devices: Causes and Solutions
Yao Liu, Qi Wei, Lei Guo, Bo Shen, Songqing Chen, and Yingjie Lan

Abstract—The Internet has witnessed rapidly increasing
streaming traffic to various mobile devices. In this paper, through
analysis of a server-side workload and experiments in a controlled
lab environment, we find that current practice has introduced a
significant amount of redundant traffic. In particular, for the
popular iOS based mobile devices, accessing popular Internet
streaming services typically involves about 10% - 70% redundant
traffic. Such a practice not only over-utilizes and wastes resources
on the server side and the network (cellular or Internet), but also
consumes additional battery power on user’s mobile devices and
leads to possible monetary cost. To alleviate such a situation
without changing the server side or the client side, we design
and implement CStreamer that can transparently work between
existing mobile clients and servers. We have implemented a
prototype and installed on Amazon EC2. Experiments conducted
based on this prototype show that CStreamer can completely
eliminate the redundant traffic without degrading user’s QoS.

Index Terms—Internet Mobile Streaming, iOS, redundant
traffic

I. INTRODUCTION

Today mobile devices, such as iPhone and iPad, are becom-

ing more and more popular. As of June 2013, iOS holds 57%

market share of mobile devices including smartphones and

tablets [1]. Besides the general web surfing on the Internet,

these days more and more accesses from mobile devices

are directed to all kinds of Internet streaming services. For

example, popular video sharing websites such as YouTube [2],

Dailymotion [3], and Veoh [4], and service providers such

as Hulu [5] and Netflix [6], all allow mobile users to access

their services via mobile browsers and/or applications. As a

result, today mobile video traffic dominates the Internet mobile

traffic. According to Cisco’s report [7], mobile video traffic

accounts for about 51% of total mobile data traffic in 2012,

and is predicted to exceed two thirds by 2017. It has been

found that 80% of the mobile video accesses take place on

iOS devices [8].

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Y. Liu is with the Department of Computer Science, Binghamton University,
State University of New York. E-mail: yaoliu@cs.binghamton.edu.

Q. Wei is with the Department of Bioengineering, George Mason Univer-
sity. E-mail: qwei2@gmu.edu.

L. Guo is with the Department of Computer Science and Engineering, The
Ohio State University. E-mail: lguo@cse.ohio-state.edu.

B. Shen is with Vuclip, XinLab. Inc.. E-mail: bshen@vuclip.com.
S. Chen is with the Department of Computer Science, George Mason

Unviersity. E-mail: sqchen@cs.gmu.edu.
Y. Lan is with the Guanghua School of Management, Peking University.

E-mail: ylan@gsm.pku.edu.cn.

However, compared to streaming services to traditional

desktops, Internet streaming to mobile devices is still chal-

lenging. Mobile devices typically use wireless connections.

Be it WiFi or 3G/4G, typically, the capacity of a wireless

connection still could not keep up with its wired counterpart,

while streaming applications often involve bulk data trans-

mission in a continuous fashion. This constrains the video

quality (e.g., video encoding rate bits/second) that could be

effectively delivered to mobile users. In addition to the quality,

this could cause additional monetary cost to mobile users if

cellular network connections have been used, because today

the cellular data plan usually uses a tiered billing model,

e.g., [9]. Watching videos online can not only quickly generate

a significant amount of traffic, but also result in the usage tier

to be reached sooner, and extra monetary cost for subsequent

data usage.

Moreover, the limited battery supply is still the Achilles’

heel of any mobile device. Receiving, decoding, and displaying

a bulk amount of streaming data inevitably depletes the limited

battery power supply at a fast pace [10].

Therefore, for mobile devices and mobile users, it is very

important that the streaming data should be delivered in a

precise fashion without unnecessary traffic or extra monetary

cost. However, in this paper, through server-side workload

analysis and client-side measurements and experiments in

a controlled lab environment, we find that current Internet

mobile streaming practices introduce a significant amount of

redundant traffic. In particular, for the popular iOS based

mobile devices, accessing streaming services typically involves

about 10% to 70% redundant traffic if a user watches the

requested video from the beginning to the end. That is,

such redundant traffic is not due to the early termination

of the client access. Through experiments and analysis, we

further investigate why such a significant amount of redundant

traffic is transmitted. Our results show that: (1) to improve

user’s experience of potentially re-watching the video, the

MediaPlayer on iOS devices constantly re-downloads the

beginning part of the video again after finishing downloading

the entire file; (2) when the downloading speed is fast, the

MediaPlayer frequently aborts the HTTP connection and then

sends the request again, causing data in flow to be wasted;

and (3) when the downloading speed is slow, the MediaPlayer

continuously sends additional and overlapping requests to

smooth the playback.

Such a significant amount of redundant traffic not only

wastes network bandwidth, but also over-utilizes server-side

resources. A streaming server is often short of bandwidth and

processing power today due to the rapid increase of video files

2

and requests [11]. Moreover, even if such redundant traffic is

for the sake of user’s perceived streaming performance, it is

detrimental to the mobile device’s interest (in terms of battery

power consumption) and the mobile user’s interest (in terms

of potentially extra monetary cost).

Motivated by our measurement results, we examine the

potential causes for such un-necessary traffic in normal mobile

streaming accesses. We find these problems are mainly due to

the limited available memory and the too fast/slow network

connections. These findings motivate us to seek effective so-

lutions to alleviate and minimize such redundant traffic without

modifying the server side or the client side. For this purpose,

we design and implement CStreamer that can transparently

work between the client and the server. CStreamer partitions

the video content into small segments. To eliminate the re-

downloaded traffic, CStreamer synchronizes the MediaPlayer’s

downloading with the playback progress. To refrain from

sending too fast, it serves the segments periodically, instead

of all at once. To deal with slow connections, CStreamer

allows the MediaPlayer to seamlessly switch to a lower quality

version of the same video provided by the server during

playback.

To evaluate the effectiveness of CStreamer in minimizing

the redundant traffic, we have implemented a prototype of

CStreamer and have deployed it on Amazon EC2. Differ-

ent iOS devices are instructed to access various streaming

services via this prototype. Our experimental results show

that CStreamer can completely eliminate the redundant traffic

without affecting user’s perceived streaming experience. In

summary, this paper makes the following contributions:

• Through server-side workload analysis and client-side

measurements, we find that the current Internet streaming

services to iOS mobile devices often generate 10% to

70% redundant traffic that is detrimental to the server (for

delivery), the network (for transmission), the mobile device

(for battery consumption), and the mobile user (for money).

• Conducting experiments in controlled environments, we

investigate the potential causes of such redundant traffic. We

find it is mainly attributed to the limited available memory

and too fast or too slow network connections.

• Motivated by our findings, we design and implement

CStreamer that transparently works between the client and

the server. We evaluate our CStreamer prototype with

various popular Internet streaming services, and show that

CStreamer can completely eliminate redundant traffic with-

out degrading the user’s QoS.

The rest of the paper is organized as follows. We present

some background about HTTP range requests and iOS stream-

ing in Section II. Both the server-side and client-side measure-

ments are presented in Section III. We present our analysis in

Section IV. Our design and implementation of CStreamer is

presented in Section V and we evaluate its performance in

Section VI. Some related work is presented in Section VII

and we make concluding remarks in Section VIII.

II. HTTP RANGE REQUEST AND STREAMING TO IOS

Among the popular mobile devices, iOS based devices are

leading the market [1]. According to Freewheel, 80% of wire-

less video views take place on iOS devices [8]. iOS supports

two streaming protocols: Pseudo Streaming [12] and HTTP

Live Streaming (HLS) [13]. Pseudo Streaming today carries

more mobile traffic than HLS, as it is often used by video

streaming services like YouTube [2] and DailyMotion [3],

and YouTube alone contributes 27% of mobile traffic in North

America [14].

With Pseudo Streaming, the client can download the media

content from an HTTP server. The playback can start before

the entire file is downloaded. For this reason, Pseudo Stream-

ing is also referred to as progressive downloading. In order to

support VCR-like control, such as fast forward and rewind, the

client can also use HTTP range requests to request part of the

video file. An HTTP range request, or range request in short,

is an HTTP request with ranges specified in the header of the

request, indicating the desired data range of the requested file.

The server only needs to respond with that part of file instead

of the entire file. However, the entire file can be requested

with the range specified from 0 to filesize-1.

The iOS MediaPlayer identifies itself with the user agents

(e.g., AppleCoreMedia/1.0.0). Upon receiving a Pseudo

Streaming request, it first checks the cache on its storage (i.e.,

flash memory). If it could not find the requested video in the

cache, it asks the server for meta-data information about the

video file, including file size, last modified time, etc. This is

achieved by sending out an HTTP GET request specifying

a range of 0-1. Then, the MediaPlayer sends multiple HTTP

requests for the file, and specifies a range to download in each

request.

If the requested video is cached, the MediaPlayer sends a

If-Modified-Since request to the server. If the server

replies with HTTP 304 Not Modified, the MediaPlayer

starts to play the cached content. However, due to the limited

storage and the potentially large video file size, the Medi-

aPlayer does not cache the entire file. Instead, it only caches

the beginning part (e.g., several hundred KBytes) of the video

file. So it issues multiple consecutive HTTP range requests

to request the non-cached part of the file. Correspondingly,

the server replies with HTTP 206 Partial Content for

each range request.

III. INTERNET AND LOCAL MEASUREMENTS

In order to investigate the Internet mobile streaming delivery

to iOS, we conduct measurement and analysis from both a

server side and a client side.

A. A Server-Side View

To gain a collective view of the current Internet mobile

streaming practice, we are allowed to access server-side logs

from a top Internet mobile streaming service provider, Vu-

clip [15]. Vuclip allows users to access the streaming service

via an application installed on their mobile devices. Users can

use either cellular or WiFi connections to search and play

videos on mobile devices. Pseudo Streaming is available from

this service. We collected one-month server log from Feb 1st to

Feb 28th, 2011. While accesses from various mobile devices

are logged, we extract accesses from iOS devices based on

3

10
0

10
1

10
2

10
3

10
4

of Requests per Session

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

All Sessions

Transferred>File

(a) # of HTTP Requests per Session
(CDF)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Traffic per Response (Bytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

(b) Traffic (Bytes) per Response
(CDF)

0.0 0.5 1.0 1.5 2.0
transferred_size/file_size

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

(c) Ratio Between Traffic and Filesize
(CDF)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
transferred_size/file_size

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

(d) When Session Length >
3

4
Video

Duration

Fig. 1. iOS Traffic from Server-side Log

User-Agent String in HTTP requests, and compare the

logged traffic amount with the actual file size.

In the one-month server-side workload, we extract 397,940

unique video sessions from iOS devices accessing the Vuclip

during February 2011. Our following analysis focuses on these

iOS sessions only. Note that in each session the video is not

necessarily watched from the beginning to the end, as a user

may find the video not interesting and terminate the session

early.

Each viewing session consists of multiple HTTP (range)

requests. Figure 1(a) shows the distribution of # of HTTP

requests that are served by the server per viewing session.

For about 50% of the sessions, more than 12 requests are

used. More than 20% of the sessions have issued more than

40 requests.

Figure 1(b) shows the distribution of HTTP response size.

Note here when we count the size of a response, we have

excluded the response header information and only count the

size of the response body. In general, the response size is

determined by two factors: (1) if the request is successfully

served, the response size is the same as the requested range;

(2) if the request was aborted by the client, then the response

size is smaller than the specified range. As shown in the figure,

more than 35% responses are about 64 KBytes (reasons to be

discussed in Section IV-C).

For each unique session, we sum up the body size of HTTP

responses, termed as transferred size, and compare it

with the actual size of the requested file. Figure 1(c) shows the

distribution of the ratio between the transferred size against the

actual file size. Overall, more than 28% sessions received more

data than the actual file size. Besides the extra data received,

Figure 1(a) shows these sessions also initiated more HTTP

requests to download the video. Given that we are considering

all sessions here, such a number would be much larger if

we only consider sessions that had watched the entire video.

Figure 1(d) further shows that for sessions that last longer than

three quarters of the video duration, 78% of them received

more data than the video file size. 39% of them even received

over 50% more traffic than the actual file size.

B. A Client-Side View

In addition to server-side workload analysis, we also con-

duct experiments in our lab in order to investigate the redun-

dant traffic. We have conducted experiments with four devices

running different versions of iOS as shown in Table I.

TABLE I
DEVICES USED IN EXPERIMENTS

Name iOS version Memory Size

iPod Touch 3.1.2 128 MB

iPhone 3G 4.2.1 128 MB

iPhone 3GS 5.0.1 256 MB

iPhone 4S 5.1 512 MB

0 10 20 30 40 50 60 70 80 90
Multiple Tests on iOS Devices

0

20

40

60

80

100

To
ta

l
Tr

a
ff

ic
 (

M
B

y
te

s
)

iPod Touch

iPhone 3G

iPhone 3GS

iPhone 4S

File Size

(a) Traffic received by iOS devices
(MBytes)

0 10 20 30 40 50 60 70 80 90
Multiple Tests on iOS Devices

0

50

100

150

200

250

300

350

400

To
ta

l
#

 o
f

T
C

P
 S

tr
e
a
m

s iPod Touch

iPhone 3G

iPhone 3GS

iPhone 4S

(b) Total # of TCP Streams Per Watch-
ing Session

Fig. 2. Statistics of iOS devices watching YouTube

These devices are instructed to access two types of services.

On the one hand, they are used to access the streaming service

of YouTube [2], Dailymotion [3], and Veoh [4] via the default

web browser on iOS, MobileSafari. On the other hand, we

also setup our own HTTP server in our lab running Nginx

0.7.65 [16] to do controlled experiments in order to further

investigate why and how the redundant traffic is delivered.

During the experiments, to record all the incoming and

outgoing packets, we setup Wireshark [17] to listen on the

same channel as the testing device in promiscuous mode and

capture all packets received/delivered from our testing device.

We analyze the traffic that is received by these testing devices,

with a focus on the amount of redundant traffic that is received.

Our first set of experiments is to investigate whether such a

redundant traffic phenomenon is unique to Vuclip or it exists

for other services as well. For this purpose, we first use our iOS

devices to watch a same YouTube video repeatedly at different

times. We capture all the incoming and outgoing packets in

the streaming sessions, and compare the actual size of the

video file (36.7 MBytes) with the total number of bytes in the

HTTP responses that are received by our testing devices. While

the server-side workload may have included early terminated

viewing sessions, in the client-side experiments, all viewing

sessions are normal sessions without early termination.

4

TABLE II
AVERAGE TRANSFERRED SIZE VS. FILE SIZE (BYTES)

YouTube Dailymotion Veoh

Duration (sec) 480 478 484

File Size 38,517,389 27,517,003 21,645,105

iPod Touch 57,176,659 Not Playable 41,397,294

iPhone 3G 74,442,375 35,584,935 46,122,323

iPhone 3GS 47,460,396 43,231,408 30,335,657

iPhone 4S 44,538,836 30,999,255 34,320,877

Figure 2(a) shows the results of our iOS devices watching

the same YouTube video at different times of a day. Most

of the streaming sessions received more than 40 MBytes of

responses, which is 10% more than the file size. It is noticeable

that iPhone 3G even received more than 74 MBytes of traffic

in some sessions, which is more than doubled the size of the

video file. Note that we only count the payload (i.e., video

data) of HTTP responses here, without taking into account

the HTTP/TCP/IP headers.

We further conduct experiments with all three different

video streaming services, accessing 3 different video files from

our testing devices. Table II shows the average received traffic

of our 4 testing iOS devices compared to the actual file size

from 10 tests each. We find that on average mobile devices’

received traffic is consistently more than 110% of the actual

file size across all three video files and four different devices.

The impact of such an extra amount of redundant traffic is

multi-fold. First, this increases the traffic on the Internet. More

importantly, this adds additional load on the server while a

server is constantly busy with serving multiple clients. Besides

unnecessarily over-utilizing the server and Internet resources,

such traffic is also detrimental to the user and mobile devices’

interests. On one hand, receiving more data would make the

wireless network interface card (WNIC) on the mobile device

to work longer and thus consume more battery power. On

the other hand, if the video is downloaded using a cellular

network connection, it would lead to the data plan tier be

reached sooner than expected and generate more monetary

cost because cellular data plans today often use a tiered billing

model.

IV. ANALYSIS OF REDUNDANT STREAMING TRAFFIC

To find out why such redundant traffic is transmitted, we

closely study the captured workloads and further conduct

experiments to validate our findings.

A. MediaPlayer RE-REQUESTs downloaded data after the

entire file is downloaded

We have discussed in Section II that to request the video

file for playback, the MediaPlayer sends out multiple HTTP

range requests for the file. We thus examine how the requested

range changes as playback proceeds. Figure 3 shows the

Byte-Range of consequent HTTP requests during one typ-

ical YouTube experiment for our 4 iOS devices, respectively.

In all experiments, we instruct our testing devices to watch the

same 480-second long video on YouTube. The file size of the

TABLE III
EXTRA TRAFFIC DELIVERED AFTER DOWNLOADING IS FINISHED

(BYTES)

Ratio Average Re-Downloaded Traffic

iPod Touch 14/18 23,964,478

iPhone 3G 14/16 50,057,285

iPhone 3GS 19/24 1,998,859

iPhone 4S 14/24 5,063,157

video is 38,517,389 Bytes (i.e., the YouTube video in Table

II).

Figure 3(a) shows two phases, one before 262 seconds and

one after 262 seconds. While the entire video file is fully

downloaded in the first phase, we notice that there are quite

some range requests afterwards (the second phase). Note that

the video plays for 480 seconds. For iPhone 3G, Figure 3(b)

also shows similar two phases. The first one before 220 sec-

onds, and the second one after 220 seconds. For iPhone 3GS

shown in Figure 3(c), the two phases are before 190 seconds

and after 190 seconds. For iPhone 4S shown in Figure 3(d),

the two phases are before 109 seconds and after 109 seconds.

However, this is not due to re-watching or rewinding, because

we watched the entire video without seeking backwards during

the playback or clicking on the replay button. That is, after the

video file has been completely downloaded, the MediaPlayer

automatically starts to request an earlier portion of the file

again. Such a behavior is consistently observed in not only

YouTube but also other Internet streaming services and our

HTTP server.

To study these re-downloading, we further examine the

repeated YouTube tests. In these viewing sessions, we study

the amount of extra traffic as being transmitted after the entire

file has been downloaded. The results are shown in Table

III. For 14 out of 18 tests on iPod Touch, the MediaPlayer

downloaded the beginning part of the video again after fin-

ishing downloading the entire file, and the average amount

of extra traffic is 22.9 MBytes. For iPhone 3G, such traffic

is seen in a higher percentage of tests (14 out of 16), with

an average of 47.7 MBytes, which is even larger than the

file size. The first such re-request requests from an early

point of the file (Range_Start, file content after this point

is no longer cached in memory) to a certain point in the

middle of the file (Range_End). In succeeding requests, the

Range_Start increases with an interval of 64 KBytes as

would Range_End.

After multiple experiments, our conjecture on this behavior

is that mobile devices have limited amount of memory and

do not use swap to expand memory size. Given the limited

available memory and big video file size, in order to download

unplayed portion of the file, some played portion of the

video file has to be evicted from the memory. At a later

time after the entire file has been downloaded, in order to

accommodate user’s potential request to re-watch the video,

the MediaPlayer downloads the data from beginning again and

requests the missing part of the video that has been evicted

from the memory, causing re-requests. However, at this point,

the memory is mostly occupied by downloaded but not yet

5

0 60 120 180 240 300 360 420 480
Time (seconds)

0

5

10

15

20

25

30

35

40
R

e
q
u
e
st

e
d
 R

a
n
g
e
 (

M
B

y
te

s)

(a) iPod Touch

0 60 120 180 240 300 360 420 480
Time (seconds)

0

5

10

15

20

25

30

35

40

R
e
q
u
e
st

e
d
 R

a
n
g
e
 (

M
B

y
te

s)

(b) iPhone 3G

0 60 120 180 240 300 360 420 480
Time (seconds)

0

5

10

15

20

25

30

35

40

R
e
q
u
e
st

e
d
 R

a
n
g
e
 (

M
B

y
te

s)

(c) iPhone 3GS

0 60 120 180 240 300 360 420 480
Time (seconds)

0

5

10

15

20

25

30

35

40

R
e
q
u
e
st

e
d
 R

a
n
g
e
 (

M
B

y
te

s)

(d) iPhone 4S

Fig. 3. HTTP Range Requests in one YouTube Experiment

0 60 120 180 240 300 360 420 480
Time (seconds)

0

5

10

15

20

25

30

35

40

R
e
c
e
iv

e
d
 R

a
n
g
e
 (

M
B

y
te

s
)

(a) iPod Touch

0 60 120 180 240 300 360 420 480
Time (seconds)

0

5

10

15

20

25

30

35

40

R
e
c
e
iv

e
d
 R

a
n
g
e
 (

M
B

y
te

s
)

(b) iPhone 3G

0 60 120 180 240 300 360 420 480
Time (seconds)

0

5

10

15

20

25

30

35

40

R
e
c
e
iv

e
d
 R

a
n
g
e
 (

M
B

y
te

s
)

(c) iPhone 3GS

0 60 120 180 240 300 360 420 480
Time (seconds)

0

5

10

15

20

25

30

35

40

R
e
c
e
iv

e
d
 R

a
n
g
e
 (

M
B

y
te

s
)

(d) iPhone 4S

Fig. 4. Received Range per Request in one YouTube Experiment

played data, and thus the available free memory space is

small. In addition, the downloading speed is so fast that it

is about to fill up the available memory (Section IV-B). Then

the MediaPlayer decides to abort that connection so as not to

replace the un-played data, causing multiple re-requests to be

sent.

In general, mobile devices have a smaller memory size

compared to desktop/laptops. For example, the iPod Touch and

iPhone 3G we used for experiments have only 128 MBytes

memory, and the system daemons use up more than 2/3

of the memory, leaving about only 30 MBytes memory for

applications running on the mobile device. Because of the

small memory, sometimes it is not feasible for a mobile device

to fit the entire video in the memory. One may wonder if

by increasing the memory size would solve the problem.

However, as we have shown in Figures 3(c) (d) and Table III,

with memory size increased to 256 MBytes in iPhone 3GS

and 512 MBytes in iPhone 4S, such re-downloading behavior

still persists.

While the iOS devices are mobile devices, we further use

Safari 5.1.1 to watch the same video on mobile YouTube [2]

(instead of the www.youtube.com site) from a MacBook Pro

running Mac OS 10.7 Lion with 4 GBytes of memory. While

multiple repeated experiments have been conducted, with no

exceptions, no re-requests are issued for the downloaded data

after the entire file has been downloaded. Clearly, MacBook

Pro has a much larger memory size, allowing it to cache

the entire video in the memory and serve directly from the

memory if the user wants to re-watch the video.

On iOS mobile devices, however, with the increased video

quality, higher screen resolutions, and multi-tasking capability,

the available memory would always be limited. And as a result,

to better accommodate the user’s potential replay request, the

MediaPlayer’s decision to download the video again has po-

tentially contributed a significant amount of redundant traffic.

Even worse, the user may decide not to re-watch the video,

and the re-downloaded data is completely wasted.

B. The client frequently ABORTs the connection, causing data

in flow useless

While Figure 3 shows the range of the requests sent from the

mobile devices, Figure 4 shows the corresponding responses to

these requests. As we can observe by comparing both figures,

while the MediaPlayer often sends out an HTTP range request

from the start or a later point to the end of the file, the

MediaPlayer also often aborts the connection before it receives

all the requested data, and starts a new connection after that.

A new HTTP range request is sent to the server through a

new connection, with Byte-Range from the last successfully

received byte in the previous connection all the way to the

end of the file. Figure 4(a) shows that 113 connections were

set up and terminated during the first 262 seconds when the

MediaPlayer was actively downloading the file. For iPhone

3G/iPhone 3GS/iPhone 4S as shown in Figures 4(b) (c) and

(d), the received ranges are also consistently smaller than the

requested ranges as shown in Figures 3(b) (c) and (d).

Figure 2(b) shows the total number of TCP connections used

to download the entire video file from the YouTube server.

On average, iPod Touch uses 114 TCP connections to watch

the video, while iPhone 3G uses 208, iPhone 3GS uses 61,

and iPhone 4S uses 64. These numbers are also consistent

with what we have observed from the server-side log shown

in Figure 1(a): among the sessions that received more traffic

than the file size, 47% of them sent out more than 100 HTTP

requests.

Figure 5(a) shows the distribution of traffic amount that

has been successfully received and acknowledged at the TCP

layer of the client for each connection. More than 95% of

the TCP connections received less than 1 MB data, much

smaller than the Byte-Range specified in the HTTP requests

as shown in Figure 3. Given the small amount of traffic

transferred, it is not hard to imagine that the TCP connections

do not last long either. Figure 5(b) shows the distribution of

time elapsed from the client sends out TCP-SYN to start a

TCP stream till it decides to terminate the connection and

sends out TCP-FIN. It is shown that about 78%-88% TCP

6

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

ACKed Traffic Before TCP-FIN sent (KBytes)

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

iPod Touch

iPhone 3G

iPhone 3GS

iPhone 4S

(a) ACK-ed Traffic of TCP Streams
Before TCP-FIN is Sent

10
-2

10
-1

10
0

10
1

10
2

10
3

Period before FIN sent (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

iPod Touch

iPhone 3G

iPhone 3GS

iPhone 4S

(b) Connection Time of TCP Streams
Before TCP-FIN is Sent

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Time Delta (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

iPod Touch

iPhone 3G

iPhone 3GS

iPhone 4S

(c) Time Delta Between Two Consec-
utive TCP Stream Connections

0 50 100 150 200 250 300 350 400
ACK-ed but Wasted Traffic (KBytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

iPod Touch

iPhone 3G

iPhone 3GS

iPhone 4S

(d) ACKed but requested AGAIN in
Subsequent Connections

Fig. 5. TCP Stream Connections

streaming sessions of our testing iOS devices lasted less than

1 second before they were terminated. A subsequent TCP

connection was immediately started after that. As shown in

Figure 5(c), the mean time difference between the transmission

of TCP-FIN of the previous connection and the TCP-SYN of

a new connection is about 1 second for iPod Touch/iPhone

3GS/iPhone 4S, and 200 ms for iPhone 3G.

Such abnormal aborts apparently can cause the data in flow

to be wasted as typically it takes at least a round-trip time

for the server to respond to the termination. One may wonder

such frequent aborts and new requests may be due to the slow

connection speed. However, these experiments were conducted

in our lab with dedicated AP and at different times. As shown

later, we have validated that this is not the reason. Before we

try to look for answers, we first show how much traffic has

been wasted due to such abnormal aborts.

First, in our experiments, we observe that some of the

packets received and acknowledged at TCP layer are requested

again in the subsequent connection. For example, suppose the

MediaPlayer requested the range from 100 KBytes to the end

of file in a request, and 500 KBytes are received and acknowl-

edged at TCP layer before TCP-FIN is sent out. Ideally, the

subsequent request should be from 600 KBytes to the end of

file if the ACK-ed packets are delivered to the application.

However, we consistently observe the subsequent request to

request from anywhere between 100 KBytes and 600 KBytes,

to the end of the file, causing duplicated traffic transmission.

Figure 5(d) shows the distribution of the wasted traffic amount.

In about 36% and 27% of all aborted connections for iPod

Touch and iPhone 3G, more than 120 KBytes data are ACK-ed

at TCP layer, but requested again in the subsequent connection.

For iPhone 3GS and iPhone 4S, 20% aborted connections

wasted more than 93 KBytes and 46 KBytes data, respectively.

Second, besides ACK-ed packets that are not successfully

delivered to the application layer, more data is wasted in

half-closed connections. When the MediaPlayer decides to

terminate a connection, it sends out a TCP-FIN, and expects

the server to reply with TCP-FIN. The HTTP server, however,

interprets this as a half-closed TCP connection in which there

is nothing to transmit from the client side. The server continues

to send out the response that has already been in the TCP

buffer before replying with a TCP-FIN, given that the TCP

window size at the client side is often set to 131,072 Bytes

(128 KB) in the last segment. However, as we observe from

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Period after FIN sent (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

iPod Touch

iPhone 3G

iPhone 3GS

iPhone 4S

(a) TCP Stream Session Time After
FIN is Sent

0 20 40 60 80 100 120 140 160
Data Received After TCP-FIN (KBytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

iPod Touch

iPhone 3G

iPhone 3GS

iPhone 4S

(b) Data Delivered After TCP-FIN is
Sent

Fig. 6. Time and Traffic Delivered During Half-closed TCP

the traces, for each subsequent none TCP-FIN packet received

at the client side, the client sends out a TCP-RST, asking

the server to stop sending to this connection. Moreover, most

video servers today use asynchronous I/O, which might cause

more packets to be sent out before the TCP-RST is processed.

Because of the mismatch between the client and the server,

the server continues to send packets after receiving TCP-FIN.

We analyze the RST-ed traffic of traces from our experiments.

Figure 6 depicts the distribution of time between when TCP-

FIN is sent out and when the last packet of the TCP connection

is received at the client side. For most TCP stream sessions,

it takes the YouTube server about 10 ms to 100 ms to stop

sending packets to the closed TCP connection. As a result,

as shown in Figure 6(b), a median of 28 KBytes to 54

KBytes data is wasted per closed connection for 4 testing

devices. Recall that we have shown in Figure 2(b) that more

than 60 TCP connections on average are used for a single

viewing session in our experiments, wasting 54 KBytes data

per connection would lead to more than 3 MBytes redundant

traffic in total for these RST-ed packets.

1) Reasons for frequent connection aborts: As we observe

a high number of aborted connections, we set to investigate

why such TCP behaviors happen. We first examine whether

the serving speed impacts the MediaPlayer’s decision to abort

a connection. We categorize all TCP connections observed in

our experiments into two categories: TCP connections that are

aborted before the full HTTP response is received (termed

as Aborted connections), and normal TCP connections that

received the full HTTP response (termed as Normal connec-

tions).

Figure 7(a) shows the average throughput per connection

7

10
0

10
1

10
2

10
3

10
4

Throughput (KBytes/s)

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

Aborted

Normal

(a) Local Nginx HTTP Server

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Throughput (KBytes/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

Aborted

Normal

(b) YouTube

Fig. 7. Throughput (KBytes/s) of Aborted Connections (CDF)

0 60 120 180 240 300 360 420 480
Time (seconds)

0

5

10

15

20

25

30

35

40

R
e
q
u
e
s
te

d
 R

a
n
g
e
 (

M
B

y
te

s
)

Fig. 8. Byte-Range of Requests in Slow Connections

in our experiments with our local Nginx HTTP server. In

these experiments, we set different bandwidth limits to the

server, and examine the connections that are aborted or

closed normally. We calculate average throughput as the traffic

amount that has been received and acknowledged divided by

the TCP connection time between TCP-SYN and TCP-FIN. As

shown in the figure, about 80% of Normal TCP connections

have a throughput smaller than 600 KBytes/s, while more

than 85% of Aborted connections’ throughput is more than

600 KBytes/s. Overall, although there is no clear distinction,

Aborted connections generally have higher throughput than

Normal connections. The results from Internet (YouTube)

experiments as shown in Figure 7(b) are also similar. This

confirms that such frequent connection abortions are actually

not caused by slow connections, but rather fast connections.

Fast connections can impact the downloading behavior from

two aspects. On one hand, when the MediaPlayer finds the

downloading speed is so fast that the downloaded but un-

played part of the video has nearly filled up all the available

memory, it may decide to abort the connection, and let the

playback buffer be consumed before resuming the download-

ing. On the other hand, with fast connections, the MediaPlayer

finds the downloading speed is too fast, but it does not know if

the user would continue to watch the video. If not, continuing

to download at such a high speed would waste both traffic and

battery power on the mobile device. So it decides to abort the

current connection, and start a new one afterwards if the user

is still watching.

C. Additional OVERLAPPING requests are sent to compen-

sate slow connections

While the fast serving/downloading speed from the server

can cause redundant traffic, we find that a slow serv-

ing/downloading speed causes problems as well. This happens

when the MediaPlayer finds the downloading speed of the

current connection is not fast enough to keep up with the

playback progress. Such a slow downloading speed may be

caused by either server-side bandwidth constraint or client-

side connection limit. Server-side bandwidth constraint is

potentially caused by: (1) the server is serving too many

connections; and (2) the server is throttling the per connection

serving speed. On the client side, the mobile device’s slow

connection speed can be caused by competition for wireless

channel, be it either cellular or WiFi. When the connection

speed is slow, the MediaPlayer starts a new connection to

request data in the unit of 64 KBytes. This helps smoothly

play the video by fetching desired data directly. However,

the original “slow” connection is not terminated, continues

to download the file.

This pattern is very common in the server log we have

collected. As shown in Figure 1(b), more than 35% HTTP

responses are around 64 KBytes. Close inspection of the log

reveals that 29% of HTTP responses we collected from the

log are exactly 65,536 Bytes. Among streaming sessions that

receive at least one 65,536 Bytes HTTP response, 30% are

slow sessions whose average throughput is smaller than the

video encoding rate.

We also observe this phenomenon in our HTTP server

when we set the serving speed limit. The requested range

and the served size as logged are usually 65,536 Bytes (64

KB). For example, Figure 8 shows the Byte-Range as

specified in each HTTP request when we limit the serving

speed to 82 KBytes/s and instruct iPhone 4S to view a video of

480 seconds and 38,517,389 Bytes (80 KBytes/s). The initial

request was from the beginning all the way to the end of the

file, and was not aborted throughout the session. It took the

server 469 seconds to finish delivering the data. During the 469

seconds when the response was being sent, the MediaPlayer

further sent out 79 requests, each with a Byte-Range of

65,536 Bytes. As a result, 5,117,344 Bytes were received

to compensate the slow connection. After the entire file

was downloaded, the MediaPlayer started to download the

file again from the beginning, as shown at 487 seconds in

the figure. Because these requests were aborted before the

MediaPlayer received the full response, they only led to a total

of 86,271 Bytes of traffic. Overall, the MediaPlayer received

13.7% more traffic than the actual file size.

D. Summary

Through experiments and analysis, we find the redundant

streaming traffic can be mainly attributed to the following:

(1) the limited available memory causes the MediaPlayer

to re-download the previously downloaded data in order to

accommodate potential replay requests from the user; (2) the

limited available memory and the fast connection speed cause

HTTP connections to be frequently aborted, wasting a lot

of data in flow; (3) a slow connection can also cause the

MediaPlayer to issue overlapping requests to provide better

experience to end users.

8

!"#$%&'()*+(%#",

!"#$%&'%$(

)*+%,("%$-%$

!"#$%&-"./"*0",

!"#$%&-",1",

2"34"50&6%*#+",

!"##$%# &'())*+,

-./0/1%

!""#$%%&'()*"*+,'-)&

!"#$%&'%$

())

!"#
$*+

,$%
&'(
)*+
,-

!.#
$*+

,$/
*0&
-

Fig. 9. Overview of CStreamer

V. DESIGN AND IMPLEMENTATION OF CSTREAMER

The redundant traffic is mainly caused by the limited

available memory on mobile devices and the mismatch be-

tween the client and the server for connection aborts. Such

redundant streaming traffic not only over-utilizes the Internet

and server resources, but also ultimately incurs extra battery

power consumption and potentially monetary cost to users.

Unlike desktop operating systems, mobile operating systems

today do not use swap/virtual memory to extend memory size.

Moreover, as we have shown, even if the physical memory

size is increased from 128 MBytes in iPhone 3G to 512

MBytes in iPhone 4S, the problem persists. This is likely due

to the increased screen resolution of iPhone 4S that uses more

memory for display, and the increased degree of multitasking

on iPhone 4S. As the quality level of mobile videos also keeps

increasing, the limited memory size is likely to continue as a

bottleneck for Internet mobile streaming.

Furthermore, iOS is a closed system, which makes it diffi-

cult for users to modify the iOS MediaPlayer. One may argue

that such a problem is due to design pitfall or a software

bug, and can be fixed by software updates. However, such

a problem is seen in different iOS versions from 3.1.2 to 5.1

with millions of devices installed. Updating existing software

may not be easy and quick.

With these considerations in mind, we have built a mid-

dleware system, which we call CStreamer. With CStreamer,

redundant traffic can be eliminated without changing either

the iOS MediaPlayer or the many media sites which serve

videos via Pseudo Streaming.

A. CStreamer Design

While Pseudo Streaming to iOS generates redundant traffic

due to three reasons as discussed in Section IV, we find that

such phenomenon does not happen when videos are delivered

with HTTP Live Streaming (HLS) [13]. This is because in

HLS, a big video file is segmented into small segments, each

containing typically 10 seconds of streaming content. Given

the small size of these segments, the iOS MediaPlayer can

download each segment in one HTTP request and store the

downloaded segment fully in memory. This is different from

Pseudo Streaming, where the big video file being downloaded

cannot be stored in full given the limited available memory.

This suggests a straightforward solution for mitigating the

redundant traffic in Pseudo Streaming: convert Pseudo Stream-

ing into HLS. The challenge here, however, is how such

conversions can be done in a transparent approach.

Figure 9 shows the architecture of the CStreamer. CStreamer

combines an iOS App with a proxy-like CStreamer server.

The iOS App works with the CStreamer server to rewrite

Pseudo Streaming video links so that the MediaPlayer requests

streaming data using HLS from the CStreamer server. When

the CStreamer server receives such a video request with the re-

written URL, it downloads the desired video from the video

server using a single HTTP GET request. Then it segments

the video according to HLS, and transmits the segments to

the iOS devices for playback. Converting Pseudo Streaming

to HLS with CStreamer brings the following benefits:

1) When downloading speed is fast: With Pseudo Stream-

ing, the MediaPlayer requests the media file aggressively. In

CStreamer, however, the MediaPlayer requests file segments

sequentially and periodically. That is, a subsequent request is

not sent out immediately following the current one. Rather, it

waits for its turn until the playback progress has reached its

scheduled time.

This allows the MediaPlayer to take into consideration

the playback progress when issuing requests. Depending on

the memory available at the client side and the connection

speed, the MediaPlayer requests at least 1, at most 5 segments

ahead of the current playback. On one hand, this reduces the

unwatched data if the user stops watching in the middle. On

the other hand, when the available memory size is small, the

request rate is not as aggressive as in Pseudo Streaming, and

therefore HTTP requests would not be aborted. Moreover, the

MediaPlayer does not re-download the beginning portion of

the video after finishing downloading the entire video.

2) When downloading speed is slow: While downloading

a video using Pseudo Streaming under a slow connection,

the iOS MediaPlayer issues parallel, overlapping requests for

video ranges, leading to redundant traffic and even slower

effective downloading speeds. When the MediaPlayer goes

through CStreamer transparently, however, it always waits

to receive the full response of the current request, without

sending out any additional overlapping requests.

To deal with various connection speeds, many video service

providers today, including YouTube, offer different versions of

the same video encoded in different rates. This allows a user to

switch to a lower quality version when the downloading speed

is slow compared to the streaming rate. To adaptively deliver

the video when the connection speed is slow, CStreamer

requests a high quality version and a low quality version of

the same video, segments both versions, and puts the meta-

information of both versions in the same playlist, allowing the

user to seamlessly switch between different versions.

As a middleware solution, CStreamer can be deployed at

various places on the Internet. For example, users can set

up CStreamer on their desktop computers at home, streaming

service providers can set up CStreamer at the server-side as a

reverse proxy, cellular service providers can set up CStreamer

at their base stations, Internet companies can also set up

CStreamer as an add-on service for their users.

9

B. CStreamer Implementation

Our CStreamer prototype consists of four major compo-

nents:

1) Request Handler: The Request Handler processes two

types of requests sent by the mobile device: meta-info requests

and video requests. For meta-info request (e.g., requesting

a file containing video name, duration, and video link), the

Request Handler requests the desired content from the video

server. However, before it delivers the response, it rewrites

the Pseudo Streaming link in the response to a new URL: the

CStreamer URL. This URL is an HLS URL that points to

a new playlist file on the CStreamer Media Server. After the

mobile device receives the response containing the CStreamer

URL, if the user decides to watch the video, the MediaPlayer

sends out a video request directing for the CStreamer URL.

When the Request Handler receives such a video request, it

calls the Media Downloader.

2) Media Downloader: The Media Downloader receives

the request from the Request Handler. It extracts the orig-

inal Pseudo Streaming link from the CStreamer URL, and

starts immediately to download the requested video at the

highest speed. As the video is being downloaded, the Media

Downloader pipelines content to the Media Segmenter, which

segments video without waiting for the download to complete.

This pipelining procedure results in a minimal user perceived

start-up delay.

3) Media Segmenter: The Media Segmenter consists of two

parts: Container Changer, and Segmenter. Videos deliverable

to iOS devices via Pseudo Streaming today, are often put into

either MP4 or 3GP format other than MPEG2-TS used by

HLS. The video file must be put into MPEG2-TS container

format to be segmented. However, unlike video transcoding

which is CPU intensive and slow, changing only the container

format does not require changing the audio/video encoding

and is fast enough to be conducted at real-time.

The Media Segmenter receives pipelined output from the

Media Downloader, feeds the data into the Container Changer

to change the container format. The Container Changer further

pipelines its output to the Segmenter, which segments the

video into segments according to the HLS specification [13].

The pipelined execution of the Media Downloader and the

Media Segmenter makes CStreamer very fast to prepare the

video content.

After the requested video has been processed, the Media

Downloader and the Media Segmenter can move on to process

another version of the same video, either in higher quality or

lower quality.

4) Media Server: While the Media Downloader and Media

Segmenter are still processing, the Media Server allows the

user to download and watch the first segment. Without an

EXT-X-ENDLIST tag in the playlist file, the MediaPlayer

waits and retrieves the playlist again later from the Media

Server, which contains updated playback meta-information.

To efficiently utilize the storage at the Media Server, and

save the downloading bandwidth cost, the Media Server also

maintains a database with information about the original video

file (e.g., web service, video id, video link, etc.) and its

corresponding segmented files (e.g., location, playlist file,

0 1 2 3 4 5 6 7 8
Time (minutes)

0

10

20

30

40

50

60

To
ta

l
Tr

a
ff

ic
 (

M
B

y
te

s
)

Pseudo Streaming

CStreamer

(a) YouTube (36.7 MBytes)

0 1 2 3 4 5 6 7 8
Time (minutes)

0

10

20

30

40

50

60

To
ta

l
Tr

a
ff

ic
 (

M
B

y
te

s
)

Pseudo Streaming

CStreamer

(b) DailyMotion (26.2 MBytes)

Fig. 10. CStreamer Eliminates Redundant Traffic

etc.). This allows more requests for the same video to be

served directly from the Media Server, without repeating the

downloading and segmenting processes.

C. CStreamer iOS App

For an iOS device to use CStreamer, the end user can set the

CStreamer server as an HTTP proxy to handle the requests.

However, manually configuring the iOS device is inconvenient

for end users, and proxying all traffic through CStreamer puts

a lot of burden on the CStreamer server. To mitigate such

drawbacks, we have also implemented a CStreamer App. To

end users, the CStreamer App is a web browser. However, it

monitors all requests, and identifies meta-info requests. For

example, the request URL for a YouTube video meta-info

starts with http://m.youtube.com/watch?ajax=1.

The response to this request contains a json file with video’s

Pseudo Streaming link in it. The CStreamer App redirects such

video meta-info requests to the CStreamer server, where the

response is rewritten by the Request Handler.

VI. PERFORMANCE EVALUATION

To evaluate the effectiveness of CStreamer, we deploy our

prototype on Amazon EC2 [18]. We run CStreamer on an

EC2 Micro Instance, and instruct our iOS devices to

access the video services of YouTube and Dailymotion via

CStreamer. For each access, we repeat the experiments 10

times consecutively. In our experiments, we focus on whether

CStreamer can serve user’s requests in a timely manner, so we

do not consider the case when the video can be directly served

from CStreamer cache. After each experiment with CStreamer,

we empty the media server’s storage.

Figure 10(a) shows the traffic patterns of two consecutive

experiments we conducted to watch a 480-second YouTube

video on iPhone 3GS using Pseudo Streaming and CStreamer

respectively. With Pseudo Streaming, over 59 MBytes of

traffic is delivered. With CStreamer, the 480-second video is

segmented into 48 segments. In the current implementation,

the segments are delivered periodically. Thus each segment is

delivered every 10 seconds, except for the first 5 segments,

which are requested aggressively by the MediaPlayer. Figure

10(a) shows that with CStreamer: (1) each segment is down-

loaded only once and no RE-REQUEST is observed, even

if the last segment finishes downloading 40 seconds earlier

before the end of playback; (2) The MediaPlayer on the iPhone

10

TABLE IV
ESTIMATED START-UP DELAY (SECONDS)

Name Pseudo Streaming CStreamer

YouTube 1.78 1.75

Dailymotion 2.42 2.87

TABLE V
AVERAGE WNIC SLEEP TIME (%)

Name Pseudo Streaming CStreamer

YouTube 80.9 87.7

Dailymotion 79.8 90.5

3GS does not abort any connections, and each segment is

downloaded in only one connection. As a result, no redundant

traffic is transmitted during the entire streaming session. As a

result, about 31% of traffic is saved compared to using Pseudo

streaming.

Similarly, Figure 10(b) shows the traffic patterns of watch

a 478-second video on Dailymotion. More than 50 MBytes of

traffic is transmitted using Pseudo Streaming, while CStreamer

does not cause any redundant traffic.

While CStreamer can eliminate redundant traffic as shown

in Figures 10(a) and 10(b), one may wonder if the user

perceived streaming quality could be affected due to additional

processing between the client and the server. A vital metric

here is the start-up delay. We thus examine how long does

it take from the user choosing to watch a video to the

MediaPlayer starts playback.

We estimate the start-up delay of Pseudo Streaming by

examining the period between when the HTTP request for

the video is sent and when 10 seconds of streaming data

is received. For CStreamer, we examine the period between

when the video request is sent and when the first segment was

downloaded. To make the comparison more meaningful, we

compare a pair of experiments that are conducted sequentially.

Table IV shows the results. For YouTube, we find that the

video server is close to our testing location. So with Pseudo

Streaming, it took only 1.78 seconds to download the initial

10 seconds of playback data. With CStreamer, despite the

communication between our client and CStreamer server as

well as the processing delay, it took only 1.75 seconds to

download the first 10-second segment. This is potentially

because the EC2 instance we used to run CStreamer is also

close to the YouTube server on the Internet, and therefore

it can download the video at very fast speed. Similar to

YouTube, we find that Dailymotion does not experience much

additional delay either. This indicates the start-up delay, which

is important to user’s perceived QoS is not affected by using

CStreamer.

Using CStreamer also brings another benefit. It allows

the wireless network interface card (WNIC) on the mobile

device to spend more time in low-power sleep mode, and

thus saves battery power consumption. The battery saving

comes from two aspects: the reduced total traffic amount

and the bursty traffic delivery. For example, for the YouTube

experiment presented in Figure 10(a), the WNIC is able to

sleep 86.8% (416 seconds) of time during the 480 second

playback via CStreamer; while it only sleeps 85.0% of time

in our succeeding test when watching the same video via

Pseudo Streaming. For Dailymotion, using CStreamer allows

the WNIC to sleep 91.7% (439 seconds) of the time over

478 seconds, while it can only sleep 83.6% time when using

Pseudo Streaming. The average of the 10 experiments is shown

in Table V.

VII. RELATED WORK

In recent years, the Internet streaming traffic has increased

dramatically. Plenty of previous work had mainly focused on

characterization, measurement, and analysis of all kinds of

VoD and P2P-assisted streaming services. For example, differ-

ent user access patterns, session lengths, video popularity, and

other content properties have been studied in traditional and

live VoD systems [19], [20]. Krishnappa et al. examined Hulu

traffic, focusing on the potential caching and prefetching at

the edge networks [21]. For P2P-assisted streaming systems,

there are also lots of studies that aimed to characterize and

improve the existing performance [22], [23], [24], [25].

Similar studies have been conducted on popular video sites,

such as YouTube. For example, user behaviors and video

popularity of YouTube were studied and compared with non-

UGC content from Netflix [26]. The video properties and

access patterns of YouTube were analyzed in [27]. Gill et al.

reported the traffic characteristics of YouTube at a campus

edge network [28].

With the increase of Internet mobile streaming services,

Xiao et al. studied the power consumption of mobile

YouTube [29]. Finamore et al. collected traffic from several

edge locations and studied the potential reasons for the inferior

streaming experience of mobile YouTube users [30]. Rao et

al. characterized and compared the traffic pattern of YouTube

and Netflix on desktops and mobile devices [31]. Erman et al.

examined mobile video traffic over cellular networks from the

ISP’s perspective [32]. Li et al. examined an iOS-based mobile

TV based on server-side logs [33]. In this work, focusing

on the dominant iOS devices, we find that Pseudo Streaming

to these iOS devices has introduced a significant amount of

redundant traffic in the current practice. This is different from

Android devices and Windows Phone devices that do not incur

redundant streaming traffic [34] [35]. Such redundant traffic

is detrimental to both the server and the client, as well as the

resource utilization on the Internet. Our proposed solution can

effectively address this problem without requiring changes at

either the client side or the server side.

VIII. CONCLUSION

Internet mobile streaming traffic has started to dominate

the Internet mobile data traffic, and it continues to increase

with wider adoption of all kinds of mobile devices. Precisely

delivering streaming traffic to mobile devices is not only

important to the service providers and the Internet, but also

important to mobile devices (battery power wise) and mobile

11

users (monetary cost wise). In this paper, through measure-

ment and analysis, we find that there is non-trivial redundant

traffic delivered when existing mobile streaming services are

accessed on iOS devices. Motivated by the analysis results,

we design a middleware that can transparently reduce such

redundant traffic. Having evaluated with a prototype installed

on Amazon EC2, we find that our solution can completely

eliminate such redundant traffic without degrading end users’

performance.

IX. ACKNOWLEDGEMENT

We appreciate constructive comments from anonymous ref-

erees. The work is partially supported by NSF under grants

CNS-0746649 and CNS-1117300. An earlier version [36] of

this manuscript is published in the proceedings of INFOCOM

2013 mini-conference.

REFERENCES

[1] “iOS,Android Market Share on Mobile/Tablet,” http://www.
netmarketshare.com/mobile-phones.aspx?qprid=9&qpcustomb=
1&qpcustom=iOS,Android.

[2] “YouTube,” http://m.youtube.com/.

[3] “Dailymotion,” http://touch.dailymotion.com/.

[4] “Veoh,” http://www.veoh.com/iphone/.

[5] “Hulu,” http://www.hulu.com.
[6] “Netflix,” http://www.netflix.com.

[7] “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2012-2017 ,” http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/white paper c11-520862.pdf.

[8] “Freewheel Video Monetization Report,” http://www.freewheel.tv/docs/
FreeWheelMonetizationReport Q1 2011.pdf.

[9] “AT&T Data Plan,” http://www.att.com/shop/wireless/plans/data-plans.
jsp.

[10] Y. Liu, F. Li, L. Guo, and S. Chen, “A Measurement Study of Resource
Utilization in Internet Mobile Streaming,” in Proc. of ACM NOSSDAV,
2011.

[11] Y. Liu, F. Li, L. Guo, B.Shen, S. Chen, and Y. Lan, “Measurement and
Analysis of an Internet Streaming Service to Mobile Devices,” in IEEE

Transactions on Parallel and Distributed Systems, to appear.
[12] L. Guo, S. Chen, Z. Xiao, and X. Zhang, “Analysis of Multimedia

Workloads with Implications for Internet Streaming,” in Proc. of ACM

WWW, 2005.

[13] “Apple HTTP Live Streaming,” http://tools.ietf.org/html/draft-pantos-
http-live-streaming.

[14] “Sandvine Global Internet Phenomena Report,” http://www.sandvine.
com/downloads/documents/Phenomena 1H 2012/Sandvine Global
Internet Phenomena Report 1H 2012.pdf.

[15] “Vuclip-Chinese Cinema,” http://www.vuclip.com/.

[16] “Nginx,” http://www.nginx.org/.

[17] “Wireshark,” http://www.wireshark.org.
[18] “Amazon EC2,” http://aws.amazon.com/ec2/.

[19] H. Yu, D. Zheng, B.Y. Zhao, and W. Zheng, “Understanding User
Behavior in Large-Scale Video-on-Demand Systems,” in Proc. of
EuroSys, 2006.

[20] H. Yin, X. Liu, F. Qiu, N. Xia, C. Lin, H. Zhang, V. Sekar, and G. Min,
“Inside the Bird’s Nest: Measurements of Large-Scale Live VoD from
the 2008 Olympics,” in Proc. of ACM IMC, 2009.

[21] D. K. Krishnappa, S. Khemmarat, L. Gao, and M. Zink, “On the
Feasibility of Prefetching and Caching for Online TV Services: A
Measurement Study on Hulu,” in Proc. of PAM, 2011.

[22] X. Hei, C. Liang, J. Liang, Y. Liu, and K.W. Ross, “A Measurement
Study of a Large-Scale P2P IPTV System,” in IEEE Transactions on

Multimedia, December 2007.

[23] S. Ali, A. Matur, and H. Zhang, “Measurement of Commercial Peer-
To-Peer Live Video Streaming,” in Proc. of the Workshop on Recent

Advances in Peer-to-Peer Streaming, 2006.

[24] C. Wu, B. Li, and S. Zhao, “Exploring Large-Scale Peer-to-Peer Live
Streaming,” in IEEE Transactions on Parallel and Distributed Systems,
June 2008.

[25] Y. Huang, T. Z.J Fu, D.-M. Chiu, J. C.S. Lui, and C. Huang, “Challenges,
Design and Analysis of a Large-scale P2P-VoD System,” in Proc. of

ACM SIGCOMM, 2008.
[26] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I Tube, You

Tube, Everybody Tubes: Analyzing The World’s Largest User Generated
Content Video System,” in Proc. of ACM IMC, 2007.

[27] X. Cheng, C. Dale, and J. Liu, “Statistics and Social Network of
YouTube Videos,” in Proc. of IEEE IWQoS, 2008.

[28] P. Gill, M. Arlitt, Z. Li, and A. Manhanti, “YouTube Traffic Character-
ization: A View From the Edge,” in Proc. of ACM IMC, 2007.

[29] Y. Xiao, R. Kalyanaraman, and A. Yla-Jaaski, “Energy Consumption
of Mobile YouTube: Quantitative Measurement and Analysis,” in Proc.

of NGMAST, 2008.
[30] A. Finamore, M. Mellia, M. Munafo, R. Torres, and S. G. Rao,

“YouTube Everywhere: Impact of Device and Infrastructure Synergies
on User Experience,” in Proc. of ACM IMC, 2011.

[31] A. Rao, A. Legout, Y.-S. Lim, D. Towsley, C. Barakat, and W. Dabbous,
“Network Characteristics of Video Streaming Traffic,” in Proc. of ACM
CoNext, 2011.

[32] J. Erman, A. Gerber, K.K. Ramakrishnan, S. Sen, and O. Spatscheck,
“Over The Top Video: The Gorilla in Cellular Networks,” in Proc. of

ACM IMC, 2011.
[33] Y. Li, Y. Zhang, and R. Yuan, “Measurement and Analysis of a Large

Scale Commercial Mobile Internet TV System,” in Proc. of ACM IMC,
2011.

[34] Y. Liu, F. Li, L. Guo, B.Shen, and S. Chen, “A Comparative Study of
Android and iOS for Accessing Internet Streaming Services,” in Proc.

of PAM, 2013.
[35] M. Siekkinen, M. A. Hoque, J. K. Nurminen, and M. Aalto, “Streaming

over 3G and LTE: How to Save Smartphone Energy in Radio Access
Network-Friendly Way,” in Proc. of MoVid, 2013.

[36] Y. Liu, F. Li, L. Guo, B.Shen, and S. Chen, “Effectively Minimizing
Redundant Internet Streaming Traffic to iOS Devices,” in Proc. of IEEE

INFOCOM mini-conference, 2013.

Yao Liu received the BS degree in computer science
from Nanjing University and the PhD degree in
computer science from George Mason University.
She is an assistant professor in the Department of
Computer Science at Binghamton University, State
University of New York. Her research interests in-
clude Internet mobile streaming, multimedia com-
puting, Internet measurement and content delivery,
and cloud computing.

Qi Wei is an Assistant Professor in the Department
of Bioengineering and an Affiliate Professor in the
Department of Computer Science at George Mason
University. Dr. Wei had her postdoctoral training
in the Department of Physiology at Northwestern
University. Dr. Wei received her Ph.D. from Rutgers
University in 2010 and M.Sc. from The University
of British Columbia in 2004, both in Computer Sci-
ence. She had a B.E. degree in Computer Engineer-
ing from Beijing Institute of Technology. Dr. Wei’s
research interests include biomechanical modeling

and simulation, medical imaging, computer graphics and networks.

12

Lei Guo received the BS degree in space physics
and the MS degree in computer science from the
University of Science and Technology of China in
1996 and 2002, respectively, and the PhD degree
in computer science and engineering from the Ohio
State University in 2007. After that, he worked in
Yahoo! and Microsoft as a senior member of tech-
nical staff on the systems and algorithms of social
search and social networks. He is a research scien-
tist in Ohio State University. His research interests
include big data processing and clouding computing,

multimedia systems, mobile computing, social networks, P2P networks, and
Internet measurement and modeling.

Bo Shen received the BS degree in computer sci-
ence from Nanjing University of Aeronautics and
Astronautics, China and the PhD degree in computer
science from Wayne State University, Detroit MI. He
is now the vice president of engineering at Vuclip.
Before that, he was a Senior Research Scientist with
Hewlett-Packard Laboratories. His research interests
include multimedia signal processing, multimedia
networking and content distribution systems. He
has published over 50 papers in prestigious tech-
nical journals and conferences. He holds seven U.S.

patents with many pending. Dr. Shen has been on the Editorial Board for
IEEE TRANSACTIONS ON MULTIMEDIA from 2006 to 2008. He served
as the Lead Guest Editor for IEEE TMM Special Section on Multimedia Ap-
plications in Mobile/Wireless Context. He also served on Program Committee
for a number of technical conferences including SIGMM.

Songqing Chen received BS and MS degrees in
computer science from Huazhong University of Sci-
ence and Technology in 1997 and 1999, respectively,
and the PhD degree in computer science from the
College of William and Mary in 2004. He is cur-
rently an associate professor of computer science at
George Mason University. His research interests in-
clude the Internet content delivery systems, Internet
measurement and modeling, operating systems and
system security, and distributed systems and high
performance computing. He is a recipient of the US

NSF CAREER Award and the AFOSR YIP Award.

Yingjie Lan is an Assistant Professor at Peking
Univeristy. His research interest includes robust net-
works, competitive analysis of online algorithms,
operations management, revenue management and
supply chain management.

