
Poster: FFmpeg360 for 360-Degree Videos: Edge-Based
Transcoding, View Rendering, and Visual Quality Comparison

Yao Liu
SUNY Binghamton

yaoliu@binghamton.edu

Chao Zhou
SUNY Binghamton

czhou5@binghamton.edu

Shuoqian Wang
SUNY Binghamton

swang130@binghamton.edu

Mengbai Xiao
The Ohio State University

xiao.736@osu.edu

ABSTRACT

360-degree video streaming is an emerging technology that pro-

vides immersive experiences to users. However, it both requires

high streaming bandwidth and wastes a significant portion of the

bandwidth. To improve bandwidth-efficiency, researchers have pro-

posed oriented projections and FOV rendering. However, existing

software and tools are unable to perform these tasks in an online

manner under stringent processing latency and throughput con-

straints.

In this paper, we present FFmpeg360, an open source software

that leverages the GPU to accelerate video processing, making it

possible to deploy video transformation tasks on edge computing

devices. In addition, łview videosž generated by FFmpeg360 can

be used to compare visual quality of views rendered from various

spatial and bitrate adaptation schemes designed for 360-degree

video streaming.

ACM Reference Format:

Yao Liu, Chao Zhou, Shuoqian Wang, and Mengbai Xiao. 2019. Poster: FFm-

peg360 for 360-Degree Videos: Edge-Based Transcoding, View Rendering,

and Visual Quality Comparison. In SEC ’19: ACM/IEEE Symposium on Edge

Computing, November 7–9, 2019, Arlington, VA, USA. ACM, New York, NY,

USA, 3 pages. https://doi.org/10.1145/3318216.3363372

1 INTRODUCTION

360-degree video streaming has increased in popularity in recent

years. Compared to traditional video streaming, 360-degree videos

encode video content fully surrounding a camera position, allowing

users to freely explore views from any orientation.

360-degree content is best represented as pixels on a sphere.

However, existing video codecs such as H.264 and HEVC cannot

directly encode spherical pixels. This means a 360-degree video

frame must be first projected to a rectangular frame before it can

be encoded. For example, Figure 1 shows an 360-degree image in

the equirectangular projection [4].

While a 360-degree video encodes omnidirectional views sur-

rounding a camera, users can only observe a small field-of-view

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SEC ’19, November 7–9, 2019, Arlington, VA, USA

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6733-2/19/11.
https://doi.org/10.1145/3318216.3363372

(FOV) from each omnidirectional frame. For example, to render

views centered at the sphere’s equator with 100° by 100° FOV, less

than 15% of pixels on the equirectangular frame are needed (Figure

1). The remaining 85% of pixels are wasted, i.e., downloaded, de-

coded, but not rendered to users. As a result, much of the streaming

bandwidth is wasted.

Of the many methods proposed to improve bandwidth consump-

tion of 360-degree video streaming, two are of interest in this set-

ting: i) spherical projections designed to encode a łfocus areaž in

higher quality than other portions of spherical surface pixels and ii)

edge-based-rendering to transcode and transmit frames including

the FOV surrounding the current user-orientation [10]. Facebook’s

offset cubic projection is an example of method i) [2]. This pro-

jection encodes a front-facing 30° by 30° portion of the sphere in

higher quality than a rear-facing 150° by 150° portion [13]. When

combined with user’s view prediction, both approaches allow the

streaming client to efficiently use the available bandwidth to request

360-degree video content in high quality.

Existing approaches transform input 360-degree videos into

oriented projections in an offline manner and incur a significant

amount of storage overhead at the server-side [13]. If performed in

an online manner, large amount of computation resources are re-

quired for processing video frames at the required throughput, e.g.,

30 frames-per-second. Similarly, significant computation resources

are required for edge-based FOV rendering to produce views in

response to predicted view orientations in real-time and at required

throughput.

In this paper, we present FFmpeg360 [7], an open source software

library that can perform spatial transcoding (i.e., re-projection) and

render views correspond to user’s view orientations. Compared to

other 360-degree video processing tools, FFmpeg360 leverages the

GPU for processing, making it possible to perform online spatial

transcoding and view rendering on edge computing resources while

meeting processing latency and throughput requirements. We thus

envision FFmpeg360 to be used for edge-assisted 360-degree video

streaming in the future. In addition, FFmpeg360 enables visual qual-

ity assessment of different 360-degree streaming methods. It does

so by generating łview videosž that mimic actual views observed

by the user during streaming playback. These view videos can be

generated under both a variety of different spherical projections

and different spatial and bitrate adaptation approaches. Quality of

videos generated under a baseline approach can then be compared

with view videos generated under the target approach.

https://doi.org/10.1145/3318216.3363372
https://doi.org/10.1145/3318216.3363372


SEC ’19, November 7ś9, 2019, Arlington, VA, USA Yao Liu, Chao Zhou, Shuoqian Wang, and Mengbai Xiao

Figure 1: The left figure shows a 360-degree image in the

equirectangular projection. The right figure shows a ren-

dered view oriented at yaw=0, pitch=0, with a 100° by 100°

FOV. The red-shaded area in the left figure shows only 15%

pixels on the equirectangular image used for rendering the

view in the right figure.

2 EXISTING SOFTWARE AND LIMITATIONS

Facebook transform360 [5] can transform input equirectangular

videos to output videos in various projections such as the cubic

projection, the equi-angular cubic (EAC) projection [1], and the

barrel projection [3]. Frame transformation is performed using the

CPU. It is unable to produce output video at high resolution at

throughputs required for online streaming. It also cannot render

views observed by users.

Samsung 360tools [9] can convert videos in uncompressed YUV

formats [8] from various supported input projections to output

projections using the CPU. It can be used for generating visual

quality metrics of 360-degree videos, including the traditional peak

signal-to-noise ratio (PSNR), spherical PSNR (S-PSNR) based on

the PSNR of over 600K points uniformly distributed on the sphere,

and weighted spherical PSNR (WS-PSNR) that assigns different

weights to points at different latitudes on the sphere [12]. However,

it cannot render user-observed views, and its supported visual

quality metrics do not represent the actual visual quality of views

presented to users.

omnieval [12] supports conversion of 360-degree videos among

various projections and can render user-observed views. However,

similar to transform360 and 360tools, it uses the CPU for frame

transformation. It also can only work with the YUV format and

does not work with the more common video codec/formats such

as H.264 in a MP4 container. omnieval can generate visual quality

metrics include S-PSNR and WS-PSNR, but it cannot output the the

visual quality of the viewport, e.g., viewport PSNR (V-PSNR).

3 FFMPEG360

FFmpeg360 is implemented as a fork of the FFmpeg [6] utility for

video processing. As a result, it can take input 360-degree videos in

various projections, produce output re-projected 360-degree videos,

and render łview videosž in codec/formats supported by FFmpeg.

The core component of FFmpeg360 is the implementation of an

FFmpeg video filter, 360-project. This filter takes as input a de-

coded video frame in Y, U, and V channels. It performs required

processing (i.e., re-projection or view rendering) on the three chan-

nels individually. It then returns the output video frame to the

FFmpeg pipeline.

To speed up frame processing, FFmpeg360 uses the cross-platform

OpenGL framework, leveraging the GPU for pixel sampling. It im-

plements different fragment shaders to support re-projection among

various spherical projections and rendering of views from various

input projections.

Spatial transcoding in FFmpeg360 is performed via a perl script,

remap.pl. Internally, remap.pl calls the 360-project filter to per-

form the re-projection. Re-encoding of the output video is done

by the FFmpeg encoding pipeline. For example, the following com-

mands convert an input 360-degree video in EAC projection into

standard cubic projection in 3000x2000 resolution.

$ ./ remap.pl iv=eac.mp4 ov=cube.mp4 res =3000 x2000 il=cube.lt \

ofs=uneqdeg -ecoef.glsl ovs=vertex.glsl ol=cube.lt crf =18

View rendering is performed by calling the FFmpeg360 exe-

cutable directly. To render łview videosž from a recorded trace of

user view orientations, the 360-project filter can take an łorienta-

tion filež as input. Each line in the łorientation filež should contain

a timestamp and a view orientation represented as an Euler angle

<pitch, yaw, roll> in degrees. For example,

orientation.txt

timestamp pitch yaw roll

0.027396 -11.230908 -8.936484 4.323502

Given an input 360-degree video and an orientation file, we can

create the łview videož as follows:

$ ./ ffmpeg360 -loglevel "info" -y -i equirectangular.mp4 \

-filter:v "project =1000:1000:90:90:0:0:0: simpleVertex.glsl:

֒→ equirectangular.glsl:orientation.txt:equirectangular.lt"

֒→ \

view_video.mp4

Here, the resolution of the generated view video is configured to

1000x1000, and the view’s FOV is configured to 90° by 90°.

Visual quality comparison can be performed using the psnr

and ssim [11] filters provided by FFmpeg once łview videosž are

generated. These filters take two input videos and outputs per-

frame visual quality, i.e., viewport-PSNR, to a specified file. For

example,

$ ./ ffmpeg360 -i view_video.mp4 -i ground_view_video.mp4 \

-lavfi psnr -f psnr.txt

Here, the łground view videož is the reference video used in visual

quality comparison. It is generated from the original 360-degree

video in highest quality, e.g., an equirectangular video in 4K or 8K

quality.

4 CONCLUSION

FFmpeg360 is an open source software that can perform spatial

transcoding, view rendering, and visual quality comparison for

360-degree videos. It uses the GPU to accelerate pixel sampling

required for video processing, making it possible to perform online

spatial transcoding and view rendering on edge computing devices.

Acknowledgment. This work is partially supported by NSF under

grant CNS-1618931.

REFERENCES
[1] Bringing pixels front and center in VR video. https://blog.google/products/goo

gle-vr/bringing-pixels-front-and-center-vr-video/.

https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/
https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/


Poster: FFmpeg360 for 360-Degree Videos: Edge-Based Transcoding, View Rendering, and Visual Quality Comparison SEC ’19, November 7ś9, 2019, Arlington, VA, USA

[2] End-to-end optimizations for dynamic streaming. https://code.fb.com/virtual-
reality/end-to-end-optimizations-for-dynamic-streaming/.

[3] Enhancing high-resolution 360 streaming with view prediction.
https://code.fb.com/virtual-reality/enhancing-high-resolution-360-streaming-
with-view-prediction/.

[4] Equirectangular Projection. http://mathworld.wolfram.com/EquirectangularPro
jection.html.

[5] Facebook Transform360. https://github.com/facebook/transform360.
[6] FFmpeg. http://www.ffmpeg.org/.
[7] FFmpeg360. https://github.com/bingsyslab/ffmpeg360.
[8] Recommended 8-Bit YUV Formats for Video Rendering. https:

//docs.microsoft.com/en-us/windows/win32/medfound/recommended-8-
bit-yuv-formats-for-video-rendering.

[9] Samsung 360tools. https://github.com/Samsung/360tools.

[10] Simone Mangiante, Guenter Klas, Amit Navon, Zhuang GuanHua, Ju Ran, and
Marco Dias Silva. Vr is on the edge: How to deliver 360 videos in mobile networks.
In Proceedings of the Workshop on Virtual Reality and Augmented Reality Network,
pages 30ś35. ACM, 2017.

[11] ZhouWang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on
image processing, 13(4):600ś612, 2004.

[12] Matt Yu, Haricharan Lakshman, and Bernd Girod. A framework to evaluate
omnidirectional video coding schemes. In 2015 IEEE International Symposium on
Mixed and Augmented Reality, pages 31ś36. IEEE, 2015.

[13] Chao Zhou, Zhenhua Li, and Yao Liu. A measurement study of oculus 360 degree
video streaming. In Proceedings of the 8th ACM on Multimedia Systems Conference,
pages 27ś37. ACM, 2017.

https://code.fb.com/virtual-reality/end-to-end-optimizations-for-dynamic-streaming/
https://code.fb.com/virtual-reality/end-to-end-optimizations-for-dynamic-streaming/
https://code.fb.com/virtual-reality/enhancing-high-resolution-360-streaming-with-view-prediction/
https://code.fb.com/virtual-reality/enhancing-high-resolution-360-streaming-with-view-prediction/
https://code.fb.com/virtual-reality/enhancing-high-resolution-360-streaming-with-view-prediction/
http://mathworld.wolfram.com/EquirectangularProjection.html
http://mathworld.wolfram.com/EquirectangularProjection.html
https://github.com/facebook/transform360
http://www.ffmpeg.org/
https://github.com/bingsyslab/ffmpeg360
https://docs.microsoft.com/en-us/windows/win32/medfound/recommended-8-bit-yuv-formats-for-video-rendering
https://docs.microsoft.com/en-us/windows/win32/medfound/recommended-8-bit-yuv-formats-for-video-rendering
https://docs.microsoft.com/en-us/windows/win32/medfound/recommended-8-bit-yuv-formats-for-video-rendering
https://github.com/Samsung/360tools

	Abstract
	1 Introduction
	2 Existing software and limitations
	3 FFmpeg360
	4 Conclusion
	References

