
A Comparative Study of Android and iOS for Accessing

Internet Streaming Services

Yao Liu1, Fei Li1, Lei Guo2, Bo Shen3, and Songqing Chen1

1Dept. of Computer Science, George Mason University,

{yliud,lifei,sqchen}@cs.gmu.edu
2Dept. of CSE, Ohio State University, lguo@cse.ohio-state.edu

3Vuclip, bshen@vuclip.com

Abstract. Android and iOS devices are leading the mobile device market. While

various user experiences have been reported from the general user community

about their differences, such as battery lifetime, display, and touchpad control,

few in-depth reports can be found about their comparative performance when

receiving the increasingly popular Internet streaming services.

Today, video traffic starts to dominate the Internet mobile data traffic. In this

work, focusing on Internet streaming accesses, we set to analyze and compare

the performance when Android and iOS devices are accessing Internet streaming

services. Starting from the analysis of a server-side workload collected from a

top mobile streaming service provider, we find Android and iOS use different ap-

proaches to request media content, leading to different amounts of received traffic

on Android and iOS devices when a same video clip is accessed. Further studies

on the client side show that different data requesting approaches (standard HTTP

request vs. HTTP range request) and different buffer management methods (static

vs. dynamic) are used in Android and iOS mediaplayers, and their interplay has

led to our observations. Our empirical results and analysis provide some insights

for the current Android and iOS users, streaming service providers, and mobile

mediaplayer developers.

1 Introduction

Mobile devices are gaining increasing popularity among common users. While the

market competition between different devices has been intense, iOS devices (such as

iPhone, iPad, and iPod Touch) and Android devices (such as Galaxy Nexus, Motorola

Droid, and Kindle Fire) are most popular today. It is reported that iOS and Android

devices comprise more than 79% of all existing mobile devices [1].

Today more and more mobile users use their devices for Internet streaming accesses.

While various streaming protocols are supported, Pseudo Streaming [2] is the most

popular among mobile devices. Both iOS and Android have native support for Pseudo

Streaming from the very beginning. YouTube [3], Dailymotion [4], and Veoh [5] all

support Pseudo Streaming for mobile devices to access their video content.

As streaming accesses typically involve a large amount of data transferring in a

continuous fashion for a relatively long duration, two aspects are of particular concerns

to a mobile device user. The first is about the battery power consumption. Today the

limited battery power supply is still the Achilles’ heel of all mobile devices, and a

breakthrough of the battery technology is still not on the horizon yet. On the other

hand, for most common mobile users, their mobile traffic amount is closely related

to the monetary cost that they need to pay to the cellular service provider. Streaming

accesses often involve bulk data transmission, resulting in more traffic than other routine

activities. Thus it is of a user’s greatest interest if a less amount of traffic is delivered

while the service quality remains unchanged.

In this work, focusing on Internet streaming accesses, we set to analyze and com-

pare the performance when Android and iOS devices are accessing Internet streaming

services. We start with the analysis of a server-side workload collected from a top mo-

bile streaming service provider. In this workload, about 26,713,708 HTTP requests were

observed to access 15,725 video clips in 28 days, generating a total of 27.4 TB video

traffic. Analyzing this workload, we find that Android and iOS devices use different

approaches to request media content, leading to a different amount of received traffic

on Android and iOS devices when a same video clip is accessed.

To figure out the underlying causes, we further conduct client-side experiments

with the state-of-the-art iOS and Android devices. Through extensive experiments and

by delving into the source code of the Android mediaplayer, we find that the current

Android and iOS mediaplayers employ different data requesting approaches (standard

HTTP request vs. HTTP range request) and different playout buffer management meth-

ods (static vs. dynamic). These contrasting approaches and methods lead to a significant

amount of redundant traffic received on iOS devices but not on Android devices. Intu-

itively, this causes more battery power consumption on iOS devices and potentially

results in more monetary cost to iOS users.

Our study provides some insights for common users when they access online

streaming services. In addition, our experiments and analysis show that different medi-

aplayer frameworks have been used in Android and iOS with different media content

requesting approaches and playout buffer management methods. These insights can

help the future mediaplayer development as well as streaming service providers. The

client-side trace is available for download at [6].

2 Server-side Observations

The server log we have collected is from a top mobile streaming video site, Vuclip,

which serves worldwide mobile users. The workload is collected from Feb 1st to Feb

28th, 2011. In this workload, about 26,713,708 HTTP requests are observed to access

15,725 video clips in 28 days, generating a total of 27.4 TB video traffic.

Vuclip supports both iOS and Android. Users can install an application [7] on their

mobile devices from iOS AppStore or Google Play. The application provides the same

user interface to both iOS and Android users, and allows them to access the same pool

of videos via WiFi or cellular connections. Thus, it provides a good base for our study.

Vuclip allows users to watch videos on their mobile devices using Pseudo Stream-

ing. With Pseudo Streaming, a client can download the video file via HTTP requests,

and can start video playback without waiting for the file being completely downloaded.

It can also support a user’s request to jump to a certain position for playback by down-

loading the desired part of the file directly via HTTP range requests – HTTP requests

with properly specified range headers. In order to provision for the variance of network

speed during playback, Pseudo Streaming usually requires a buffer, often referred to as

playout buffer, on the client side to store video data to be played. Typically, download-

ing should be faster than the playback for good user experience, and it is very common

that the entire video file has been downloaded while the playback just proceeds to an

earlier part of the video.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
session_duration/video_duration

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

iOS

Android

Fig. 1: Ratio Between Session

Duration and Video Duration

(CDF)

10
0

10
1

10
2

10
3

10
4

10
5

of Requests per Session

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

iOS

Android

Fig. 2: # of HTTP Requests per

Session (CDF)

We use the User-Agent string to exam-

ine whether a request comes from an iOS

device or an Android device. For example,

when sending HTTP requests, iOS devices use

AppleCoreMedia/1.0.0 for its User-Agent

string, while Android devices identify themselves

with stagefright/1.x (Linux;Android

x.x.x). In the workload, we extract 397,940

unique video sessions from iOS devices and

884,648 unique video sessions from Android de-

vices. Each session may consist of multiple HTTP

requests. In these sessions, the users do not neces-

sarily watch the entire video from the beginning to

the end. Users may find the video uninteresting, and

terminate the playback in the middle.

Figure 1 shows the distribution of download-

ing session duration for both iOS and Android ac-

cesses1. Note that the downloading session duration

may be shorter than the user’s actual viewing dura-

tion, because in Pseudo Streaming, the download-

ing is often faster than the playback. Comparing the

accesses from iOS with these from Android devices, we find that the patterns of session

duration as opposed to the video duration are quite similar (although Android devices

generally have a slightly longer session duration than that of iOS devices). This indi-

cates similar accessing behaviors of Android and iOS devices to this streaming service.

More requests are sent out by iOS devices. Figure 2 shows the distribution of the #

of HTTP requests that were sent to the server from mobile devices in these sessions. We

find that more than 80% of Android sessions consist of only one single HTTP request,

and only less than 2% sessions consist of more than 10 HTTP requests. On the contrary,

iOS devices always send more HTTP requests. The median number is 13 HTTP requests

per iOS session. This is quite surprising because intuitively, only one HTTP request is

needed, which happened to most Android sessions. We are interested in why so many

more HTTP requests have been used in iOS sessions.

Based on the log, we find that the MediaPlayer on a mobile device can request

the video file in two ways: (1) it requests the entire video file with a standard HTTP

request, and the server responds with HTTP 200 OK, or (2) it requests a portion of

the video file using an HTTP range request, and the server responds with HTTP 206

Partial Content. Typically an HTTP range request is used when a user wants

to skip part of the video, and jump to the desired content directly. However, in this

1 iOS and Android accesses (or sessions) refer to accesses (or sessions) originated from an iOS

or Android device. They are used for brevity.

server log, we find that iOS devices always use HTTP range requests, even for the first

request. But Android devices always use standard HTTP requests, and only use HTTP

range requests to fetch desired content directly if the user decides to jump to another

part of the video. Table 1 shows the percentage of different types of HTTP requests

that have been used by iOS and Android devices, respectively. As shown in the table,

more than 80% Android traffic is delivered using standard HTTP responses (200), while

almost all iOS traffic is delivered using HTTP partial content response (206). Note that

although the percentage of HTTP range requests in Android sessions seems also high,

it is mainly because once a user starts to use interactive functions, a sequence of range

requests often have to be used. Nevertheless, over 80% of Android traffic is delivered

via standard HTTP connections.
Table 1: HTTP Request/Reply

(Number and Traffic Amount)

HTTP 200

Name #Requests Traffic Amount

iOS 0.01% 0.001%

Android 27.30% 80.594%

HTTP 206

Name #Requests Traffic Amount

iOS 99.99% 99.999%

Android 72.70% 19.406%

0.0 0.5 1.0 1.5 2.0
transferred_size/file_size

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

iOS

Android

Fig. 3: Ratio Between Received

Traffic and File Size (CDF)

More traffic is received at iOS devices. We fur-

ther sum up the size of HTTP responses that be-

long to the same video session, and examine if

such different content requesting approaches on

Android and iOS devices have any impact on the

traffic delivered to them. Figure 3 shows the re-

sult. As we can observe from this figure, for An-

droid devices, about 55% Android sessions down-

loaded the same amount of traffic as the video file

size, and only a very small percentage of the ses-

sions downloaded more data than the video file

size. This could be caused by user re-watching the

video. The rest (about 43%) only downloaded par-

tial video content and terminated earlier.

On the other hand, for iOS devices, about 72%

iOS sessions terminated earlier before the entire

file is downloaded. But the most surprising re-

sult is that for about 28% iOS sessions, the down-

loaded traffic is larger than the video file size. Be-

cause we are comparing the requests of Android

and iOS devices from a same streaming service, it is reasonable to assume that the

users’ interest and access patterns are similar. Thus, among the 28% sessions that iOS

devices downloaded more data than the actual video file size, only a very smaller por-

tion is likely due to users’ real re-watching activities. We are interested in about 28%

iOS sessions that have received extra traffic (than the actual file size).

3 Analysis of Android and iOS Mediaplayers

While the server-side workload has provided us a high-level overview of different con-

tent requesting approaches of iOS and Android devices when accessing Internet stream-

ing services as well as different amounts of traffic received, the workload cannot provide

more details for us to explore the underlying reasons. Thus, in this section, we further

investigate these observations using the state-of-the-art Android and iOS devices.

For iOS, because we cannot access its source code, we mainly conduct client-side

experiments in a controlled environment to infer how it works by analyzing the captured

Table 2: Devices Used

Name OS version Memory Size

iPod Touch iOS 3.1.2 128 MB

iPhone 3G iOS 4.2.1 128 MB

iPhone 3GS iOS 5.0.1 256 MB

iPhone 4S iOS 5.1 512 MB

Nexus One Android 2.3.4 256 MB

Kindle Fire Android 2.3.4 512 MB

Table 3: iOS Devices Accessing a 36.7

MB YouTube Video

Name # of HTTP Received Re-downloaded

Connections Traffic (Bytes) (Bytes)

iPod Touch 261 83,410,351 26,450,851

iPhone 3G 301 82,616,828 37,449,911

iPhone 3GS 105 63,713,281 11,523,915

iPhone 4S 67 51,625,429 9,292,410

traffic. For Android, in addition to the client-side experiments, we are able to get a better

idea of how it works by accessing the source code of its mediaplayer.

The client-side experiments are conducted in our lab with a dedicated 802.11 b/g

access point (AP). We use six different mobile devices running different mobile oper-

ating systems and different versions of the mobile OS. Table 2 lists these devices. We

use 4 different iOS devices and 2 different Android devices. Note that although Kindle

Fire uses a customized version of Android, it uses the same mediaplayer framework as

other Android devices including the Nexus One we use in our experiments.

In order to examine all the incoming and outgoing traffic to/from our testing devices,

we set up Wireshark [8] running on a laptop computer to listen on the same channel as

the AP in promiscuous mode. Packets are captured in real-time and processed offline.

3.1 iOS and AppleCoreMedia

The mediaplayer in iOS is called AppleCoreMedia. When Pseudo Streaming is used to

access a video file, AppleCoreMedia will send out HTTP requests for the video file. On

the server’s side, it can be identified with User-Agent of AppleCoreMedia/1.0.0.

On iOS devices, a mobile user may access the video streaming service in various ways,

e.g., from the mobile browser of MobileSafari, or a third party streaming application

installed on the iOS device. AppleCoreMedia will be called when the mobile browser

or the application has to handle a streaming request. AppleCoreMedia usually specifies

a range in its HTTP requests. For example, if it is requesting the entire video file, it will

send out an HTTP request with the range specified from 0 to filesize−1.

To study the behavior of AppleCoreMedia in downloading media content, we use

our testing devices to access a same 480-second YouTube video via their mobile

browsers. The file size of that video is 38,517,389 Bytes. In each experiment, we let

an iOS device watch the entire video (8 minutes) from the beginning to the end without

any manual activities. Figure 4 shows the accumulative traffic pattern of 4 different iOS

devices accessing this video along time as well as the playback progress. Note the total

traffic in this figure only includes the media content. That is, protocol headers are all

excluded. We find that during the first 30 seconds of each session, AppleCoreMedia

downloads with a high speed, and slows down afterwards. Clearly, this is the initial

buffering phase of a video streaming session, which is also called fast start [9]. More

interestingly, we notice that the amount of received traffic by iOS devices is larger than

the video file size (36.7 MBytes). For iPod Touch and iPhone 3G, the total received

traffic amount is even more than twice of the actual video file size.

Table 3 summarizes the amount of total traffic received during these sessions by 4

iOS devices. Note that these sessions are normal sessions without early terminations or

any replays. Analyzing the corresponding packet-level workload we have captured, we

0 1 2 3 4 5 6 7 8
Time (minutes)

0

10

20

30

40

50

60

70

80

To
ta

l
Tr

a
ff

ic
 (

M
B

y
te

s
) Download

Playback

0

10

20

30

40

50

60

70

80

(a) iPod Touch

0 1 2 3 4 5 6 7 8
Time (minutes)

0

10

20

30

40

50

60

70

80

To
ta

l
Tr

a
ff

ic
 (

M
B

y
te

s
) Download

Playback

0

10

20

30

40

50

60

70

80

(b) iPhone 3G

0 1 2 3 4 5 6 7 8
Time (minutes)

0

10

20

30

40

50

60

70

80

To
ta

l
Tr

a
ff

ic
 (

M
B

y
te

s
) Download

Playback

0

10

20

30

40

50

60

70

80

(c) iPhone 3GS

0 1 2 3 4 5 6 7 8
Time (minutes)

0

10

20

30

40

50

60

70

80

To
ta

l
Tr

a
ff

ic
 (

M
B

y
te

s
) Download

Playback

0

10

20

30

40

50

60

70

80

(d) iPhone 4S

Fig. 4: Traffic Pattern of iOS Devices Accessing a YouTube Video

find that multiple HTTP range requests are issued to download the streaming content.

That is, instead of using a standard HTTP request, iOS devices always issue multiple

range requests to download media content. This is consistent with what we have ob-

served from the server-side workload shown in Figure 2. It is noticeable that iPhone 3G

even issued more than 300 HTTP requests to download the video file. For devices with

an increased memory size, such as iPhone 3GS and iPhone 4S, the number of HTTP

requests is reduced to 105 and 67, respectively.

The above results show that the multiple HTTP range requests used by iOS are not

due to Vuclip, as the same phenomenon has been observed in other popular streaming

services as well. Besides YouTube, we have also tested against two other popular sites

Dailymotion and Veoh, we have found similar patterns.

In addition, we also find in Table 3 that the received traffic amount on these iOS

devices is significantly larger than the actual file size. Recall that we have observed

different amounts of traffic delivered to Android and iOS devices in the server-side log.

We are interested in whether such extra traffic received on iOS devices is related to the

content requesting approach, i.e., the multiple HTTP range requests.

Inspecting the packet-level workload we have captured for these experiments, we

find that while AppleCoreMedia always starts with an HTTP range request instead of

a standard HTTP request, it constantly terminates the HTTP connection spontaneously

before the full response to that range request is received. Subsequently, it will issue

another HTTP range request. Having carefully studied the workload, our conjecture is

that such behaviors are closely related to the available memory space in a mobile device.

Our packet level traces across all these experiments consistently show that AppleCore-

Media always resets (via TCP-RST) the active connection used for the HTTP request.

The most likely reason is due to the lack of the memory space for the playout buffer.

With a small amount of available memory, AppleCoreMedia has to frequently abort the

current connection because the playout buffer is going to overflow.

Besides highly frequent connection aborts (which also necessitates multiple HTTP

range requests after aborts), we also find that AppleCoreMedia always re-downloads

the beginning part of the video after it has received the entire video file. Recall that

with Pseudo Streaming, the entire file is usually received before the user finishes the

playback. However, as shown by the last column in Table 3, a significant amount of

traffic has been transmitted afterwards for re-downloading the beginning part of the

video again. Such re-downloading is also found in our experiments with Vuclip, Daily-

motion, and Veoh. Intuitively, this seems to prepare for the potential re-play activities

of the user. With the beginning part in the buffer, the user would experience low start-

up delay. However, due to the insufficient memory supply on the mobile devices, the

beginning part might have been evicted from the buffer after its first-time playback in

order to make room for the to-be-played content. Such re-downloading behavior, likely

due to insufficient memory size as well, apparently contributes to the redundant traffic

we have observed in Figure 3.

For the same reason, for iOS devices with a larger memory size (such as iPhone 3GS

and iPhone 4S), the re-downloading traffic amount is much smaller as shown in Table 3.

This indicates that with more available memory, AppleCoreMedia can get more buffer

space, and put a larger portion of the video file in its buffer.

Table 4: Transferred Traffic vs. File

Size (Bytes)

Video1 Video2 Video3

Duration (sec) 360 480 657

File Size 29,503,221 38,517,389 53,405,910

iPod Touch 42,379,164 57,176,659 90,445,044

iPhone 3G 42,322,498 74,442,375 86,933,886

iPhone 3GS 37,702,143 47,460,396 72,388,936

iPhone 4S 32,248,384 44,538,836 61,731,408

We further examine the impact of the

memory size by instructing our testing de-

vices to access different video files with an

increasing file size. We use three different

YouTube videos. Videos are of different du-

rations but are encoded with the same data

rate. Table 4 shows the results we have ob-

tained. These results are the average results

over multiple experiments. This table shows

that devices with different physical memory sizes have different traffic efficiency. If we

compare the results in a same row, we can see that when the video file size becomes

larger, the amount of redundant traffic would also increase. For example, from Table 4

we can see that the redundant traffic for iPhone 4S is increased from 9% when accessing

Video1 to more than 15% when accessing Video2 and Video3.

3.2 Android and Stagefright

The study of iOS and AppleCoreMedia shows that the memory available to the playout

buffer of the mediaplayer is dynamically changing and it plays a critical role in the

entire streaming session. In this subsection, we examine if a different type of buffer

management method has been used in Android as Android devices have shown different

behaviors in accessing streaming media.

Starting from Android 2.3 Gingerbread, a new mediaplayer framework called Stage-

fright is used in Android. Similar to AppleCoreMedia, Stagefright also supports Pseudo

Streaming by using HTTP for requesting video data. On Android devices, a mobile user

can access video streaming services from either the mobile browser or applications

installed, similar to that on iOS devices. Stagefright is called when a video request

needs to be handled. From the server’s side, it can be identified with User-Agent of

stagefright/1.x (Linux;Android x.x.x). As we shall show later, Stage-

fright results in a completely different traffic pattern from that of AppleCoreMedia.

To examine how Stagefright works on Android devices, we use our testing devices

to access the same 480-second YouTube video (36.7 MBytes) via their native browsers.

Again, for each experiment, we let the Android devices watch the entire video for 8

minutes without any manual activities. Figure 5 shows the accumulative traffic pattern

of our 2 different Android devices, Nexus One and Kindle Fire, with the corresponding

playback speed. We find that downloading is explicitly and periodically paused during

the 8-minute playback. With multiple experiments conducted, we find that although

the data burst length is different across Nexus One and Kindle Fire, such pausing and

resuming behaviors can be consistently observed.

0 1 2 3 4 5 6 7 8
Time (minutes)

0

10

20

30

40

50

60

70

80

To
ta

l
Tr

a
ff

ic
 (

M
B

y
te

s
) Download

Playback

0

10

20

30

40

50

60

70

80

(a) Nexus One

0 1 2 3 4 5 6 7 8
Time (minutes)

0

10

20

30

40

50

60

70

80

To
ta

l
Tr

a
ff

ic
 (

M
B

y
te

s
) Download

Playback

0

10

20

30

40

50

60

70

80

(b) Kindle Fire

Fig. 5: Traffic Pattern of Android Devices

Accessing a YouTube Video

Table 5: Android Devices Accessing a

36.7 MB YouTube Video

Name # of HTTP Received Re-downloaded

Connections Traffic (Bytes) (Bytes)

Nexus One 1 38,517,389 0

Kindle Fire 1 38,517,389 0

Further inspection of the corresponding packet level workloads reveals that only one

single HTTP request is used to download the video file by both Nexus One and Kindle

Fire as shown in Table 5. When the downloading is paused, instead of terminating the

current TCP connection as AppleCoreMedia does, Stagefright sets the TCP window

size to 0, so that the server would not send any more packets to it. When it wants to

resume the downloading, it will send a TCP window update message, and the server

will start to deliver the data again. Moreover, we find that the total traffic amount is

always equal to the video file size, indicating no re-downloading of the beginning part.

This is also different from AppleCoreMedia.

Such different behaviors observed on Stagefright in these experiments and in the

server-side log motivate us to explore the underlying reasons. Next, we study the An-

droid source code to better understand how Stagefright works.

enum {

kPageSize = 65535,

kDefaultHighWaterThreshold = 20 * 1024 * 1024,

kDefaultLowWaterThreshold = 4 * 1024 * 1024,

kDefaultKeepAliveIntervals = 15000000,

};

Fig. 6: Code Snippet From

/libstagefright/include/NuCachedSource2.h

In the libstagefright frame-

work, the underlying media

playout buffer is handled by

NuCachedSource2.cpp.

Basically, it sets a

HighWaterThreshold.

When the total buffer size

reaches this threshold, the

downloading would be paused. As the playback progresses, the buffer depletes.

When the to-be-played data in the buffer drops below another pre-defined threshold

LowWaterThreshold, the downloading will be resumed. Figure 6 shows some

code snippet from the latest Stagefright source code we extract from the Android

base. We can see that buffer space is allocated in terms of 65,536 Bytes (64 KB).

When the total buffer size reaches 20 MB, downloading would be paused; when the

remaining not-played data is less than 4 MB, Stagefright will resume the downloading.

As the downloading is paused, in order to keep the connection with the server, it would

temporarily resume to download a PageSize (64 KB) of data every 15 seconds and

pause the downloading after that. This buffer management method well explains what

we have observed in both the server-side log and the client-side experiments.

Further studying the history of earlier versions in the Android code base, we find

that the value of these 4 parameters shown in Figure 6 have changed over time. For

example, in the earliest version, the HighWaterThreshold was set to 3 MB, and

the LowWaterThreshold was 512 KB. This indicates as Android devices are get-

ting more physical memory, a larger amount of buffer is allocated to the mediaplayer.

Nevertheless, the HighWaterThreshold can be seen as the total buffer size used

by Stagefright on Android devices. That is, Stagefright would only use a fixed amount

of memory despite different video file sizes, and that only a fixed amount of video

data would be kept in the buffer. Compared to iOS, this is a simple and static buffer

management method.

In addition, different Android devices may use different values for these parameters

in their out-of-factory settings. For example, based on Figure 5, we can estimate that

the HighWaterThreshold for Nexus One is around 5 MB, while Kindle Fire uses

a larger value of about 13 MB. By analyzing the debugging log from these Android

devices, we are also able to get the accurate value of LowWaterThreshold, which

is 768 KB for Nexus One and 10 MB for Kindle Fire, respectively.

3.3 Comparisons

Through client-side experiments, we confirm that Android devices often use a single

HTTP connection to download the video file unless there is manual interruption of cur-

rent playback. On the contrary, iOS devices always use multiple HTTP range requests

to download the video file. Buffer management wise, by analyzing the source code of

Android mediaplayer, we find that Stagefright always uses a fixed/preset amount of

memory for the playout buffer, while AppleCoreMedia of iOS devices always adjust

the playout buffer dynamically at runtime.

We believe such different buffer management policies have caused iOS and An-

droid devices to exhibit different behaviors when they are used to access stream-

ing videos. Stagefright would always and only store a fixed amount (set by

HighWaterThreshold) of video data, and may download at most this amount of

video data ahead of the playback. If the user stops watching the video in the middle, at

most HighWaterThreshold amount of data may be wasted. But in normal stream-

ing sessions with few user manual inter-activities, Stagefright on Android devices al-

ways downloads the exact amount of data as the video size, while AppleCoreMedia on

iOS devices always tries to keep as much video data as possible in the buffer for user’s

experience, including re-downloading the beginning part. This results in a significant

amount of redundant traffic delivered to iOS devices.

4 Related Work

With the increasing video accesses from mobile devices, a lot of research has been

conducted to examine Internet mobile streaming, from the client’s perspective [2] [10],

the video server’s perspective [11], and the ISP’s perspective [12] [13]. For example, in

our prior work, we conduct extensive measurements from the client’s perspective about

the energy-efficiency of various streaming protocols used by mobile devices today [2].

Li et al. present a detailed analysis of user behaviors and access patterns in mobile video

streaming from a server’s perspective [11].

Researchers have also studied how accesses from mobile devices and desktop com-

puters are served differently by the video service providers. For example, Rao et al.

characterize the traffic pattern of YouTube and Netflix on both desktop computers and

mobile devices [10] . Finamore et al. [12] compare the playback performance of PC-

players and mobile-players accessing YouTube, and examine the potential causes for

the inferior performance of mobile-players.

Different from prior work, in this study, we focus on the streaming access perfor-

mance of two dominant types of mobile systems Android and iOS. We find that the

different content requesting patterns and different playout buffer management policies

have caused these devices to have sharply different behaviors.

5 Conclusion

Internet mobile streaming has attracted significant attention from both industry and re-

search community, due to the dominant streaming traffic volume in the entire mobile

data traffic. In this work, we focus on the Internet mobile streaming delivery to Android

and iOS devices, with an aim to investigate their performance when receiving Inter-

net streaming content. With both server-side log analysis and client-side experiment-

based investigations, we find that Andriod and iOS mediaplayers are using different

content requesting approaches and different buffer management methods when access-

ing streaming content, which result in a non-trivial amount of redundant traffic received

by iOS devices. This would lead to extra battery power consumption on iOS devices and

additional monetary cost if cellular networks have been used. Our study not only pro-

vides some guidelines for common mobile device users, but also offers some insights

for Internet streaming service providers and mobile mediaplayer developers.

Acknowledgements. We appreciate constructive comments from anonymous referees

and our shepherd Edmond W. W. Chan. The work is partially supported by NSF under

grants CNS-0746649, CNS-1117300, CCF-0915681, CCF-1146578.

References

1. “Mobile/Tablet OS Market Share,” http://marketshare.hitslink.com/

operating-system-market-share.aspx?qprid=8&qpcustomd=1.

2. Y. Liu, L. Guo, F. Li, and S. Chen, “An Empirical Evaluation of Battery Power Consumption

for Streaming Data Transmission to Mobile Devices,” in Proc. of ACM Multimedia, 2011.

3. “YouTube,” http://m.youtube.com/.

4. “Dailymotion,” http://touch.dailymotion.com/.

5. “Veoh,” http://www.veoh.com/iphone/.

6. “Trace,” http://cs.gmu.edu/˜sqchen/open-access/pam13-trace.tgz.

7. “Vuclip-Chinese Cinema,” http://www.vuclip.com/.

8. “Wireshark,” http://www.wireshark.org.

9. “Fast Start,” http://www.microsoft.com/windows/windowsmedia/howto/

articles/optimize_web.aspx#performance_faststreaming.

10. A. Rao, A. Legout, Y.-S. Lim, D. Towsley, C. Barakat, and W. Dabbous, “Network Charac-

teristics of Video Streaming Traffic,” in Proc. of ACM CoNext, 2011.

11. Y. Li, Y. Zhang, and R. Yuan, “Measurement and Analysis of a Large Scale Commercial

Mobile Internet TV System,” in Proc. of ACM IMC, 2011.

12. A. Finamore, M. Mellia, M. Munafo, R. Torres, and S. G. Rao, “YouTube Everywhere:

Impact of Device and Infrastructure Synergies on User Experience,” in Proc. of ACM IMC,

2011.

13. J. Erman, A. Gerber, K.K. Ramakrishnan, S. Sen, and O. Spatscheck, “Over The Top Video:

The Gorilla in Cellular Networks,” in Proc. of ACM IMC, 2011.

