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ABSTRACT

With the recent successes of deep learning models, the perfor-
mance of 2D image super-resolution has improved significantly.
Inspired by recent state-of-the-art 2D super-resolution models and
spherical CNNs, in this paper, we design a novel spherical super-
resolution (SSR) approach for 360-degree videos. To address the
bandwidth waste problem associated with 360-degree video trans-
mission/streaming and save computation, we propose the Focused
Icosahedral Mesh to represent a small area on the sphere and con-
struct matrices to rotate spherical content to the focused mesh
area. We also propose a novel VertexShuffle operation on the mesh,
motivated by the 2D PixelShuffle operation. We compare our SSR
approach with state-of-the-art 2D super-resolution models. We
show that SSR has the potential to achieve significant benefits
when applied to spherical signals.
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1 INTRODUCTION

360-degree image/video, also known as spherical image/video, is an
emerging format of media that captures views from all directions
surrounding the camera. Unlike traditional 2D image/video that
limits the user’s view to wherever the camera is facing during
capturing, a 360-degree image/video allows the viewer to freely
navigate a full omnidirectional scene around the camera position.

Despite its substantial promise of immersiveness, the utility of
streaming/transmission of 360-degree video is limited by the huge
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bandwidths required by most implementations. For example, when
watching a 360-degree video, users can only watch a small portion
of the full omnidirectional view. That is, while the 360-degree video
encodes frames that cover the full 360° x 180° field-of-view (FoV),
the user may only observe a “view” (e.g., 100° X 100° FoV) of the
omnidirectional frame at a time. If the omnidirectional frame is
projected to the 2D frame using the equirectangular projection [1],
then only roughly 15% of the pixels on the frame is viewed. The
rest 85% pixels are not viewed, resulting in significant bandwidth
waste when streaming 360-degree videos. To improve the band-
width efficiency, a number of spatial adaptation approaches have
been proposed [8, 16, 26, 27, 31, 33]. A core difficulty with such
approaches involves predicting which portions of the 360-degree
frame will be viewed by the user. If accurate predictions can be
made of the user’s behavior (a difficult task), then only the portions
of the 360-degree frame to be viewed need to be transmitted. A “soft”
version of this family of approaches involves transmitting spatial
portions of the 360-degree video at a level of quality in proportion
to the probability that they will be viewed [37]. These approaches,
however, can still suffer from difficulties, as there can be significant
delays between the time that view prediction is made and the time
that spatial portions of the sphere are actually viewed, resulting in
inaccurate predictions [3].

A recent approach toward mitigating these types of mis-predictions
involves applying super-resolution (SR) [19] to low-resolution video
segments already present in the playback buffer. The super-resolution
task requires reconstructing a high-resolution image from low-
resolution input. To date, many approaches for super-resolution
over standard 2D images via deep convolutional network have been
proposed [10-12, 32, 36]. However, a problem with the current prac-
tice of 360-degree videos is the distortions caused by spherical-to-
2D projections. The omnidirectional views captured by 360-degree
cameras are most naturally represented as uniformly dense pixels
over the surface of a sphere. When spherical pixels are projected
to planar surfaces, distortions are introduced. For example, the
equirectangular projection [1] is a widely used spherical projection
for representing 360-degree data. However, significant distortions
occur around the north and south pole areas in the projection. Such
distortions can reduce the efficiency of CNN operations by adding
“over-represented” pixels, Further, training a CNN directly on the
distorted representation could cause CNN models to learn charac-
teristics of the planar distortion rather than relevant details of the
high resolution representation.

Recent works on spherical CNNs [6, 20] perform convolutional
operations directly on spherical signals to avoid the distortion
issue. Their works show that it is possible to analyze spherical
signals directly without 2D projections. Furthermore, extensive
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experiments were conducted in these works to show the efficiency
of their proposed spherical CNNs.

In this paper, inspired by recent advances in spherical CNNs [6,
20] and state-of-the-art 2D super-resolution methods [10-12, 32,
36], we propose a spherical super-resolution approach that operates
on a direct, mesh representation of spherical pixels of 360-degree
videos. First, we propose an efficient mesh representation, the Fo-
cused Icosahedral Mesh, This representation both makes our SR
approach compatible with 360-degree spatial adaptation and im-
proves memory efficiency of the training and prediction steps of
model operation compared to Full Icosahedral Mesh. Second, mo-
tivated by the 2D PixelShuffle operation [30], we propose a novel
VertexShuffle operation. The VertexShuffle operation significantly
increases both the visual quality metric (peak signal-to-noise ratio
(PSNR)) and improves inference time over comparable transposed
convolution operations. Evaluation results show that our spherical
super-resolution approach can achieve 31.97 dB PSNR on aver-
age when super-resoluting 16x vertices on the mesh created from
360-degree video inputs.

2 RELATED WORK
2.1 360-degree video

Despite its potential for delivering more-immersive viewing experi-
ences than standard video streams, current 360-degree video imple-
mentations require bandwidths that are too high to deliver satisfy-
ing experiences for many users. Numerous approaches have been
proposed for improving 360-degree bandwidth efficiency. These ap-
proaches have both attempted to improve the efficiency of how the
360-degree view is represented during transmission [8, 15, 16, 26—
29, 31, 33, 34] as well as improving a system’s ability to avoid
delivering unviewed pixels [37].

2.2 Spherical convolutional neural networks

Spherical CNN has been studied by the computer vision community
recently as a number of real-world applications require process-
ing signals in the spherical domain, including self-driving cars,
panoramic videos, omnidirectional RGBD images, and climate sci-
ence. Recent works such as Cohen et al. [6] gave theoretical support
of spherical CNNs for rotation-invariant learning problems.

UGSCNN [20] presents a novel CNN approach on unstructured
grids using parameterized differential operators for spherical sig-
nals. It introduces a basic convolution operation, called MeshConv,
that can be applied on meshes directly. It achieves significantly
better performance and parameter efficiency compared to state-of-
the-art network architectures for 3D classification tasks since it does
not require large amounts of geodesic computations and interpola-
tions. Zhang et al. [35] proposed to perform semantic segmentation
on omnidirectional images by designing an orientation-aware CNN
framework for the icosahedron mesh. They introduced fast interpo-
lation of kernel convolutions and presented weight transfer from
learned through classical CNNs to perspective data. Recently, Eder
et al. [13] proposed a spherical image representation that mitigates
spherical distortion by rendering a set of oriented, low-distortion
images tangent to icosahedron faces. They also presented the utili-
ties of their approaches by applying standard CNN to the spherical
data.
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While these existing works demonstrate their effectiveness in
classification and segmentation tasks, the super-resolution task
was not considered. In this work, we find it possible to apply their
work on the super-resolution task. Our work is based on the Mesh-
Conv operation proposed by Jiang et al. [20] since it achieves better
performance and parameter efficiency than other spherical convo-
lutional networks. We also conduct experiments to show significant
improvements over the baseline spherical super-resolution model
that uses the simple MeshConv Transpose operation [20].

2.3 Super-resolution

Research in super-resolution has advanced rapidly from its ori-
gins in the deep learning age. The SRCNN [10, 11] model was the
first to apply CNNs to SR. FSRCNN [12] was an evolution of SR-
CNN. It operated directly on a low-resolution input image and
applied a deconvolution layer to generate the high-resolution out-
put. VDSR [21] was the first to apply residual layers [17] to the SR
task, allowing for deeper SR networks. DRCN [22] introduced re-
cursive learning in a very deep network for parameter sharing. Shi
et al. [30] proposed “PixelShuffle”, a method for mapping values at
low-resolution positions directly to positions in a higher-resolution
image more efficiently than the deconvolution operation. SRRes-
Net [24] introduced a modified residual layer tailored for the SR
application. EDSR [25] further modified the SR-specific residual
layer from SSResNet and introduced a multi-task objective in MDSR.
SRGAN [24] applied a Generative Adversarial Network (GAN) [14]
to SR, allowing better resolution of high-frequency details. These
works focus on 2D planar data, which may not be ideal for 360-
degree image super-resolution due to the distortions introduced in
the projected representation. Our proposed model, however, oper-
ates directly on spherical signals so that we can avoid the distortion
problem. Focusing on optimizing 360-degree video streaming, Chen
et al. [5] and Dasari et al. [9] applied existing 2D super-resolution
to 360-degree video tiles. Unlike their works, we focus on design-
ing a novel spherical super-resolution approach for 360-degree
images/videos.

3 METHODOLOGY

In this section, we first introduce Focused icosahedral mesh for
representing a small area of the sphere. We then illustrate the novel
VertexShuffle operation after a brief discussion of the MeshConv
operation proposed by Jiang et al. [20]. Finally, we describe our
model architecture and loss function.

3.1 Focused icosahedral mesh

The icosahedral spherical mesh [4] is a discretization of the spheri-
cal surface. It starts with a unit icosahedron (i.e., an icosahedron
with all 12 vertices re-projected to the unit sphere). The icosahedral
spherical mesh can then be obtained by first selecting midpoints
of all edges, progressively sub-dividing each face of the unit icosa-
hedron into four equal triangles by connecting 3 midpoints of the
face, and re-projecting the midpoints to the unit sphere.
Operations on a full spherical mesh, refined to a granularity that
can include approximately all pixels from a planar representation
of a 360-degree video frame, however, require a significant amount
of computation. In addition, operations on the full mesh cannot
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(a) Full Level-1 Mesh

(b) Focused Level-2 Mesh

(c) Focused Level-3 Mesh (d) Focused Level-5 Mesh

Figure 1: Example of meshes in Level-1, Level-2, Level-3 and Level-5. To create “Focused icosahedral meshes”, we select one face
in the full Level-1 mesh and repeatedly refine triangles in this Level-1 face to obtain Focused Level-X meshes.

easily support operations on sub-areas of the spherical surface.
Performing super-resolution on “sub-areas” of the spherical surface
can be beneficial for real-world 360-degree applications. This is
because human eyes as well as their viewing devices (e.g., the
head-mounted display) have limited field-of-view (FoV), usually
represented as the angular extent of the field that can be observed.
To render the view shown in this figure, only part of the sphere is
required. Such “sub-areas” would be useful in “tiling” schemes that
can be used to support spatial-adaptive super-resolution over the
360-degree view. That is, if only a small area on the sphere will be
viewed by the user, we may only need to apply super-resolution to
a sub-portion of the sphere instead of the full sphere. As a result,
performing super-resolution on the full icosahedral mesh may no
longer be necessary as it requires more computation resources.

To support both faster operation and super-resolution on a sub-
portion of the sphere, we propose a partial refinement scheme to
generate the “Focused Icosahedral Mesh”. We first create a Level-1
icosahedral mesh by refining each face on a unit icosahedron into 4
faces. In this way, the 20-face icosahedron is refined into a Level-1
icosahedral mesh with 80 faces. An example full Level-1 mesh with
80 faces is shown in Figure 1(a). We then select one face out of the
80 faces of the Level-1 icosahedral mesh and only refine triangles
located inside the selected Level-1 face.

Specifically, in our focused mesh representation, we select the
face of the Level-1 mesh that covers the position of <latitude=0,
longitude=0> on the sphere since very little distortion is introduced
when pixels near this area are projected to the 2D plane. Figure 1(b)
shows the Focused Level-2 mesh where the selected Level-1 face is
refined into 4 smaller faces. Figures 1(c) and 1(d) show the Focused
Level-3 and Focused Level-5 meshes, respectively.

3.1.1 Rotating content to the Focused Level-1 origin. While a full
Level-1 mesh has 80 faces, we only generate one single Focused
icosahedral mesh by refining one selected face, and our spherical
super-resolution model only operates on this single Focused icosa-
hedral mesh. To allow our model to perform super-resolution for
any area on the sphere, we thus need to map spherical pixel content
that belongs to any arbitrary full Level-1 mesh face to the face that
is selected to be refined. To do so, we pre-compute a rotation matrix
R € RNPXNvXC \where Ni represents the total number of faces in
a full Level-1 mesh, which is 80, and Ny is the number of vertices
in a Level-1 face, as shown in Figure 1. A Level-1 mesh consists of
80 triangles, each containing 3 vertices. C represents the number
of dimensions of Euclidean coordinates in the sphere, namely xyz.

We denote the Level-1 face selected to be refined as face Fy. To
rotate an arbitrary face Fj, i € (0,80) on the Level-1 mesh to the
refined face Fj, we need to find a rotation matrix R; for face F; such
that F; = R; - Fy, where F; and Fy are 3 X 3 matrices that represent
the xyz coordinates of three vertices of a triangle face.

Therefore, we can obtain R; as: R; = F; - Féfl). We first rotate
the vertices in the Focused Level-X Mesh with the rotation matrix
R, and then compute a mapping from each pixel in the input planar
representation (e.g., an equirectangular image) to the rotated Fo-
cused Level-X vertex. Instead of refining all 80 faces in a mesh, in
this way, we can represent all 80 different faces on the full Level-1
mesh through a single Focused Mesh file with the most important
face refined and other faces discarded, which has the potential to
save a significant amount of computation and storage resources
and achieves better parameter efficiency.

Figure 2 visualizes how one focused icosahedral mesh can be
used to represent all 80 different Level-1 faces. Figure 2(a) shows
an original equirectangular-projected 360-degree image. In this
image, we highlight two areas marked by magenta circles. In Figure
2(b), the left-hand-side image shows the Focused Level-9 mesh
visualized on an equirectangular image. Magenta points in this
figure represent vertices in the full Level-1 mesh. There are 42
vertices in the full Level-1 mesh. The right-hand-side image in
Figure 2(b) magnifies the refined face in the Focused icosahedral
mesh to show details. We can see that content in this face are
in the same position as in the original equirectangular-projected
image. Figure 2(c) shows the resulting visualization when we rotate
a different Level-1 face to the refined face. The image on the right
magnifies the refined face to show details.

3.1.2  Mesh sizes. Table 1 shows the number of vertices in both Full
and Focused icosahedral meshes in different levels of refinement. A
Full Level-9 mesh has more than 2.6 million vertices and requires
more than 1.9 GB of space for storage. On the other hand, a Focused
Level-9 mesh has only about 33K vertices, requiring only about 24
MB storage space.

We know that the area of a unit spherical surface is 47. A frame
generated through the equirectangular projection covers a corre-
sponding area of 277 X 7t = 2772, Suppose there are Ny vertices in the
Full Level-X mesh, given that vertices on the icosahedral mesh are
roughly uniformly distributed on the sphere, we can estimate the
equivalent 2D equirectangular-projected frame resolution as fol-
lows: W =Ny X 7, H = W /2, where W and H are the width and
height of the equirectangular projection, respectively. The results
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(a) This figure shows an equirectangular-projected 360-degree image. Magenta circles,
b and c, in this figure mark areas corresponding to two different refined faces. (Original
photo by Timothy Oldfield on Unsplash: https://unsplash.com/photos/luufnHoChRU)

(b) The left-hand-side image displays the Focused Level-9 mesh visualized on an equirect-
angular image. The right-hand-side image displays a magnified view of the refined face.
In both images, magenta points represent vertices in the full Level-1 mesh.

(c) This figure displays a different Level-1 icosahedral face rotated to the face refined in
the Focused Mesh. Pixel values from the original image are attached to rotated vertices
by inverting the rotation for positions of the mesh vertices then finding the nearest
neighbor pixel of this rotated position.

Figure 2: Visualizing the Focused Icosahedral mesh.

are listed in Table 1. We find that Level-6 mesh is roughly equivalent
to the 2D equirectangular projection in 360x180 resolution, and
that Level-9 mesh is roughly equivalent to the 2D equirectangular
projection in 2880x1440 resolution.

3.2 MeshConv

The MeshConv operation introduced by Jiang et al. [20] is per-
formed by taking a linear combination of linear operator values
computed on a set of input mesh vertex values. MeshConv can be
formulated as follows:

MeshConv(F; 6) = 0IF + 01V g, F + 02V 5 F + 6:V°F, (1)

where I represents the identity, which can be regarded as the
0th order differential, same as Voo. Vg, and Vy,, are derivatives in
two orthogonal spatial dimensions, which can be viewed as the 1st
order differential. Vy stands for the Laplacian operator, which can
be considered as the 2nd order differential.
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Table 1: Number of vertices in Full icosahedral mesh, Focused
icosahedral mesh, and their roughly-equivalent 2D planar
resolution in the equirectangular projection.

Level ‘ Level-6  Level-7 Level-8 Level-9
Full 40,962 163,842 655,362 2,621,442
Focused 600 2,184 8,424 33,192
2D planar ‘ 360x180 720x360 1440x720 2880x1440

At a high level, these linear operators can be viewed as comput-
ing a set of local information near each vertex of the mesh. The
standard 3 X 3 cross correlation operation can be viewed as a set of
nine linear operators. Each of the linear operators returns a value
of either the pixel itself or an adjacent pixel. Compared to the 3 X 3
convolution, it is clear that the set of four linear operators used by
MeshConv is less expressive. They not only extract less informa-
tion per pixel, but this information also can drop information about
a vertex’s surrounding. For example, the gradient operation on
the mesh computes a 3-dimensional average of either six or seven
values. Another degree-of-freedom is dropped from the gradient
when taking only the east-west and north-south components of the
gradient. We hypothesize that some of the information excluded
from the linear operator computations could be useful for the super-
resolution task. To attempt to mitigate this information loss, rather
than including single MeshConv ops in our network architecture,
we include pairs of composed MeshConv ops (as shown in Figure 3
ResBlock depiction). These paired operations aggregate more local
information around a vertex before the non-linearity is applied, al-
lowing the network to capture more-useful characteristics needed
for the super-resolution task.

3.3 VertexShuffle

MeshConv Transpose. To upscale the downsampled low level
mesh in semantic segmentation task, UGSCNN [20] proposed a
MeshConv Transpose operation. MeshConv Transpose takes Level-
i mesh for input and outputs a Level-(i+1) mesh. It can be described
as follows:

M;4+1 = MeshConv(Padding(M;)), (2)

where Padding represents zero padding, M;4+1 and M; are Level-
(i + 1) mesh and Level-i mesh, respectively. In general, MeshConv
Transpose simply pads Os on new vertices in Level-(i+1) mesh, then
applies a regular MeshConv on the new zero-padded Level-(i + 1)
mesh. While this operation is easy to implement, it is inefficient.
VertexShuffle. Motivated by PixelShuffle [30] commonly used
in 2D super-resolution models, we propose a novel VertexShuf-
fle operation to use in our spherical super-resolution model. The
VertexShuflle operation can be described as follows:

M1 = VertexShuffle(M;) ©)
M; = Mio, Mi1, M2, Mis (3a)
N/; = MidPoint(M;(j,1)), j € {0, 1,2} (3b)
N/ = concat (N, N/;, Nj3) (3¢)
N; = unique(N;) (3d)
VertexShuffle(M;) = concat (Mo, N;) (3e)
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Figure 3: Architecture of our proposed Spherical Super-Resolution (SSR) model that uses MeshConv and VertexShuffle. L7
represent the input Level-7 mesh, and L9 represents the output Level-9 mesh.

The input of our basic VertexShuffle operation can be represented
as M; € RF XV", where F is the feature dimension in Level-i, and V;
represents the number of vertices of Level-i mesh. The output is
Mis1 € RFXVirt where F/ is the feature dimension in Level-(i + 1),
which is F/4 in our work, and Vj;; represents the number of vertices
of the Level-(i + 1) mesh.

We first split M; into four parts {Mo, Mj1, Mi2, Mj3} along fea-
ture map dimension, where M;; € RF'XVi,j = {0,1,2,3} and
F’ = F/4. We keep M as our Level-i mesh, which will be used
later. Mj1, Mj, Mj3 are used to refine vertices in Level-(i + 1) mesh.

As we introduced before, a spherical mesh can be obtained by pro-
gressively sub-dividing each face of the unit icosahedron into four
equal triangles. Here, we treat a single triangle face as a sequence of
vertices, vg, v1,v2 and a sequence of edges (vo, v1), (v1,02), (v2,00).
The refinement process can be regarded as progressively construct-
ing midpoint vertex on associated edges, and new edges in Level-
(i +1) are created between each pair of midpoint vertices, thus a
single face in Level-i is refined into four new faces in Level-(i + 1).

To fully make use of feature maps in Level-i, we use M1, M2, Mj3
to refine vertices in Level-(i + 1) mesh. Specifically, we use M;;
to calculate midpoint between (vg, v1), M2 to calculate midpoint
between (v1,v2), and M;3 to calculate midpoint between (vz,vp).
Midpoint vertex values are constructed by averaging the values
associated with the original two vertices on a edge. Thus, equation
3b can be described as follows:

Nj = MidPoint(M;1) = (M;1(vo) + M;1 (v1))/2 (4a)

Nj| = MidPoint(M;z) = (Miz(v1) + Mi2(v2)) /2 (4b)
N}, = MidPoint(M;3) = (M;3(v2) + M;3(0v0)) /2 (4c)

12

Thus, we can get a set of midpoint vertices N/, which are new
vertices generated in Level-(i + 1) mesh. However, there exist re-
dundant midpoints due to the shared edges that may be calculated
twice. We have to perform deduplication on the set of midpoint
vertices. There can be a few ways to select midpoint between the
two calculated midpoints, such as max, min, average, and weighted
average. In this work, we simply select the first instance of a mid-
point. Then, we have a set of unique midpoint vertices that used
to refine the next level mesh Nj € RF%Ai where A = Vig1 = Vi
Finally, we concatenate partial feature map in Level-i, M;o, with
the new calculated midpoint vertices N; to create our Level-(i + 1)
mesh.

Compared to MeshConv Transpose, VertexShuffle does not have
extra learnable parameters. Thus, our implementation of VertexShuf-
fle is not only more parameters efficient, but also achieves signifi-
cantly better performance.

3.4 Model architecture

We apply our Focused icosahedral mesh and VertexShuffle opera-
tion in the super-resolution task. The architecture of our spherical
super-resolution (SSR) model is shown in Figure 3. In this figure,
we show the input of our model as a Level-7 Focused icosahedral
mesh, it first goes through a MeshConv layer with Batch Normal-
ization [18] followed by a ReLU activation function. Then, we use
two adapted Residual Blocks [17] to further extract features. The
adapted residual blocks include two MeshConv layers (as discussed
in Section 3.2). We concatenate the output of the first MeshConv
and the output from the two ResBlocks by element-wise addition.
After that, we use two VertexShuffle layers to upscale feature maps.
Finally, our model ends up with a MeshConv layer, generating
a Level-9 Focused icosahedral mesh with the correct number of
channels.

3.5 Loss function

Similar to general super-resolution tasks, our goal is to minimize
the loss between the reconstructed images Y; and the correspond-
ing ground truth high-resolution images H;. Given a set of high-
resolution images H; and their corresponding low-resolution im-
ages X;, we represent the loss as follows:

N
1
MSE = — ;(Hi —Y;)?, where Y; = F(X;) (5)
Loss = 10 X log;,(MSE) (6)

where N is the number of training samples. The loss function
is the negative peak signal-to-noise ratio (PSNR), which is more
straightforward for our task.

4 EVALUATION

We used a publicly-available 360-degree video dataset [7] for exper-
iments. This dataset contains 5 videos of 4K quality at the frame
rate of 30 frames-per-second (fps). For each video in the dataset, we
use FFmpeg [2] to cut the full video temporally into segments of
1-second long each. For each segment, we train a super-resolution
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Table 2: PSNR (dB) results for all 5 videos in our testing dataset.

Model ‘ Diving Timelapse Venice Paris Rollercoaster | Average
2D with Upsample 30.34 31.75 3590 28.00 25.31 30.26
2D with PixelShuffle 33.42 34.13 40.07  32.45 33.62 34.74
Spherical: MeshConv with transposed MeshConv | 31.50 30.27 38.28  26.64 28.14 30.97
Spherical: MeshConv with VertexShuffle (SSR) 33.20 32.06 33.72  28.90 31.99 31.97

Table 3: Comparison of total number of model parameters, model storage size, and per-frame inference time.

Model ‘ Total # of Parameters ‘ Storage Size ‘ Per-frame Inference Time
2D with Upsample 86163 343 KB 23.39 ms
2D with PixelShuffle 84948 338 KB 13.54 ms
Spherical: MeshConv with transposed MeshConv 64265 273 KB 997.91 ms
Spherical: MeshConv with VertexShuffle (SSR) 79925 333 KB 74.35 ms

model for the 30 frames it contains. We conducted our experiments
on a desktop machine with Intel(R) Core(TM) i7-8700K CPU and
GeForce RTX 2080 Ti GPU.

To use our Focused Mesh in training, for each frame in a video
segment, we train for all 80 Level-1 faces. As discussed, the refined
Level-1 face is selected as a face located on the equator to avoid
distortion near pole areas. Our low-resolution input data is in Level-
7, which is roughly equivalent to a 2D equirectangular-projected
frame in 720x360 resolution. Our high-resolution target data is in
Level-9, which is roughly equivalent to 2880x1440 equirectangular-
projected frames. The upscaling factor in our experiment set up
is X4. That is, the number of output vertices is 16x the number of
input vertices.

For each video in the dataset, we train the first video segment
for 40 epochs. For the rest video segments, we take advantage of
temporal locality of videos and use a previous video segment’s
model as a pre-trained model for the current segment. This allows
us to pursue training efficiency by training each video segment for
only 15 epochs. We set the learning rate to 0.01 and use Adam [23]
as our optimizer.

Baseline models. We train models for all videos in the dataset
using our proposed spherical super-resolution (SSR) model and
compare its results with three baseline models: 2D super-resolution
with Upsample, 2D super-resolution with PixelShuffle, and spher-
ical super-resolution with transposed MeshConv (i.e., instead of
VertexShuffle). Our baseline models are also trained from scratch.

We focus our comparison on three aspects: visual quality (i.e.,

the PSNR value), model size, and inference time. For 2D baseline
models, we tile the frames spatially into small patches. Here, we use
the patch size of 45 x 45 pixels for input data, and thus, 180 X 180
pixel for output and target data. The upscaling factor is thus x4,
which is the same as our SSR model.
PSNR results. The mean PSNR values obtained by all models for
each video are shown in Table 2. 2D baseline model with PixelShuf-
fle achieves the best PSNR value because of the efficiency of 2D
convolution. Compared to the spherical baseline model that uses
transposed MeshConv operation, our SSR model achieves better
results, which shows the improvement of our new VertexShuffle
operation.

Model parameters and storage sizes. Table 3 shows the total
number of parameters of all models and their corresponding storage
sizes. The spherical baseline model with transposed MeshConv
operations used as one of our baseline models has a smaller model
size. However, its inference time is significantly longer than all
other models.

Inference time. In our spherical models, we separate the original
omnidirectional frame into 80 faces. In 2D baseline models, we tile
the image into 128 tiles. Thus, it is not fair to simply compare the
inference time for each face or tile. Instead, we use the per-frame
inference time for comparison. The experiment results are shown
in Table 3. 2D baseline models have the fastest inference time. Our
SSR model is slower than 2D baseline models but significantly faster
than the spherical baseline with transposed MeshConv operations.
In addition, given that a user will only watch a sub-portion of the
spherical frame in real scenarios, we do not need to perform super-
resolution for all 80 faces of a frame. This indicates our SSR model
can be performed in real-time to meet the 30 fps frame rate required
by most videos.

5 CONCLUSION

In this paper, we proposed a spherical super-resolution model —
SSR. SSR directly operates on spherical signals, which can avoid
issues in applying 2D super-resolution to spherical data, such as
distortion, oversampled pixels, etc. We created a memory- and
bandwidth-efficient representation of the spherical mesh - the
Focused Icosahedral mesh, which is more flexible than full meshes
and saves a significant amount of computation resources. We also
created a novel VertexShuffle operation to further improve our
model. We compared our model with three other baseline models.
Results show that our model achieves 31.97 dB PSNR on average
for super-resolution with a scale factor of x4 while maintaining
parameter efficiency.
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