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ABSTRACT

With NeRF, neural scene representations have gained increased pop-
ularity in recent years. To date, many models have been designed
to represent dynamic scenes that can be explored in 6 degrees-of-
freedom (6-DoF) in immersive applications such as virtual real-
ity (VR), augmented reality (AR), and mixed reality (MR). In this
paper, we aim to evaluate how newer neural representations of
6-DoF video compare with more-traditional point cloud-based rep-
resentations in terms of their representation and transmission ef-
ficiency. We design a new methodology for fair comparison be-
tween K-Planes, a new dynamic neural scene representation model,
and video-based point cloud compression (V-PCC). We conduct
extensive experiments using three datasets with a total of 11 se-
quences with different characteristics. Results show that the current
K-Planes models excel for moderately dynamic content, but strug-
gle with highly dynamic scenes. In addition, in emulated volumetric
data capture scenarios, the recorded point cloud data can be highly
noisy, and the visual quality of views rendered by trained K-Planes
models are significantly better than V-PCC.

CCS CONCEPTS

« Information systems — Multimedia streaming; « Comput-
ing methodologies — Point-based models; Volumetric mod-
els.
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1 INTRODUCTION

In recent years, both the ubiquity and sophistication of devices for
video collection have grown. Concurrently, the capabilities of neural
network models for fusing information from multiple video signals
have seen substantial growth. These two general developments set
the stage for more-immersive multimedia streaming applications
aimed at enhancing user experiences. Among immersive applica-
tions, 6-DoF volumetric video, which captures a real-world scene
from a multitude of perspectives over time, enables the greatest
level of immersion. Traditional 6-DoF representations include 3D
triangular meshes with texture and point clouds. These representa-
tions rely on more-direct storage and rendering of 3D scenes. On
the other hand, neural representations are often implicit represen-
tations of a scene: the stored data powering the representation is
often not interpretable by humans. For example, NeRF [23] uses
a single multi-layer perceptron (MLP) for representing a scene.
Both generating such representations by training from collected
imagery and rendering these representations can require significant
computational resources.

Although many lines of research have explored 6-DoF repre-
sentations for individual scenes, addressing the additional tem-
poral dimension in 6-DoF videos presents more challenges. Tradi-
tional 6-DoF representations can be adapted for video transmissions
by transmitting standard video-encoded streams of RGB-Depth
data, as demonstrated in prior work such as [17]. Alternatively,
representation-specific codecs [22, 27, 29] such as video-based
point cloud compression (V-PCC) [26, 28] and Draco [9, 18] can
be employed. However, neural representations for 6-DoF video
are less-well explored. These representations must simultaneously
capture temporal and spatial characteristics and also allow for space-
efficient network transmission and compute-efficient rendering.

In this paper, we set to evaluate how newer neural representa-
tions of 6-DoF videos compare with more-traditional point cloud-
based representations in terms of their representation and transmis-
sion efficiency. For our comparison, we use the K-Planes model [14]
as the state-of-the-art approach for future neural 6-DoF video rep-
resentation that can be efficiently transmitted. This model strikes a
balance between space and computational efficiency, using a repre-
sentation that factors over both space and time dimensions coupled
with a small neural network. For traditional point-cloud-based rep-
resentations, we select V-PCC as it is an emerging standard for
compressing dynamic point cloud data.
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To perform fair comparison, we design a new methodology in-
cluding the generation of training data for K-Planes and testing
data for both K-Planes and V-PCC as well as the implementation of
experiment procedures. Our study uses three different datasets of
dynamic 6-DoF scenes. Among them, two are derived from existing
datasets, while the third has been created by our team. We have
conducted extensive experiments across these three datasets with
11 dynamic sequences with different characteristics. To the best of
our knowledge, we are both the first to propose such a comparison
methodology and the first to present results from such a comparison
study of 6-DoF video representations. The configuration files used
for K-Planes training in our experiments along with the trained
models are available at: https://github.com/symmru/MMVE-2024.

Results show that for dynamic 6-DoF content with little to moder-
ate motion, using K-Planes models for representation can save the
storage size and improve visual quality of rendered views compared
to using V-PCC -based encoding. However, the current K-Planes
models cannot represent highly dynamic content very well. More-
over, in a emulated real-world scenario where point cloud data is
derived from recorded RGB and depth information, we find that
the derived point cloud data is very noisy. This confirms the in-
sights from previous studies, e.g., [19, 20]. The visual quality of
V-PCC suffers significantly. On the other hand, neural-based solu-
tion K-Planes performs substantially better compared to V-PCC in
such emulated scene capture scenario.

2 BACKGROUND AND RELATED WORK

Traditional 6-DoF representations. Volumetric videos capture
frame sequences in a 3D space, allowing users to view in 6 degree-
of-freedom (6-DoF): from arbitrary positions, (x,y, z), in 3D space
and arbitrary orientations, (¢, 9, p). 6-DoF content is widely em-
ployed in today’s computer gaming and virtual reality platforms.
In these platforms, objects and scenes are represented as synthetic
models using 3D triangular meshes with texture information that
describes how faces of the mesh should appear. Besides trianglular
meshes, another volumetric video representation, point clouds,
has received increased interests in recent years. Point clouds asso-
ciate color information with 3D pixel/point positions. They can be
captured from real-world scenes using RGB-Depth cameras. Typical
point cloud scenes contain millions of points and are infeasible to
store in raw formats. Point cloud compression (PCC) is currently
under active development under Moving Picture Experts Group
(MPEG). Among the efforts, video-based point cloud compression
(V-PCC) [15, 26] aims to leverage existing 2D video codecs for com-
pressing dense point cloud data.

NeRF-based neural representations. Neural radiance field (NeRF)
is an emerging representation of 3D scenes. It uses the volume ren-
dering technique for rendering color of pixels on an image. To
render a view of a scene, rays are traced from the camera origin
through each pixel in the rendered image. The original NeRF [23]
proposes to use a simple multi-layer perceptron (MLP) to estimate
the volume density o; and color ¢; of sample i on a ray as a function
of its position x; and direction of the ray d;. The training time of
the original NeRF is known to be very long. The authors described
in their paper that a typical training can take 1 to 2 days on a Nvidia
V100 GPU.
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TensoRF [11] is a more recent work that represents the radiance
field as a 4D tensor. The main idea of TensoRF is to use tensor de-
composition to represent the 4D tensor as the sum of vector-matrix
outer products. Compared to the original NeRF, TensoRF models
can be trained substantially faster (more than 100x improvement)
and with better rendering quality.

Neural representations for dynamic 6-DoF content. For mod-
eling dynamic scenes, many NeRF-variants exist, e.g., D-NeRF [24]
and DyNeRF [21]. Among them, K-Planes [14] is a novel approach
that represents dynamic volumetric content as a 4D volume (as
opposed to the static 3D volume). K-Planes factorizes a 4D vol-
ume into 6 planes: 3 space-only planes and 3 space-time planes.
Given q = (i, j, k,t) on the 4D volume, it is projected onto each
of the 6 planes and bilinearly interpolated to obtain 6 feature vec-
tors. Features from all 6 planes are combined using the Hadamard
product (elementwise multiplication). Additionally, K-Planes uses
multi-scale planes with different resolutions. Features obtained
from different scales s € S are concatenated. To determine the den-
sity and color, it uses two MLPs. The first MLP 5 is for mapping
the feature into volume density o and an additional feature f (q)-
The second MLP ¥ estimates the color using the additional feature
f(g) and input of ray direction d.

3 METHODOLOGY

To compare the performance of V-PCC and K-Planes for 6-DoF
video representation, we use three datasets with a total of 11 dy-
namic volumetric sequences. We next describe details of our method-
ology for conducting this comparative analysis, including the gen-
eration of datasets generation as well as the selection of metrics
used for comparison.

3.1 Datasets

We use three datasets in this study. The front-facing images of all
11 sequences in the three datasets are shown in Figure 1. The 8iVFB
dataset [13] consists of four dynamic point cloud sequences, Long-
dress, Loot, Soldier, and Redandblack as shown in Figure 1(a)-(d). It
is a voxelized full body dataset, with the spatial resolution of each
sequence being 1024x1024x1024. The vsenseVVDB2 dataset [31]
also includes four dynamic point cloud sequences, AxeGuy, Lub-
naFriends, Rafa2, and Matis. Similar to 81VFB, the spatial resolution
of sequences in vsenseVVDB2 is also 1024x1024x1024.

Both 81VFB and vsenseVVDB2 are datasets created for evaluat-
ing the performance of V-PCC . They only contain raw points data
for each sequence. To use these datasets for comparable K-Planes
evaluation, we must generate camera views from different per-
spectives with known camera extrinsic parameters. Unfortunately,
neither of these datasets provide the raw camera-captured video
frame data. To obtain data for training the K-Planes models, we
use Blender 3.5.1 [5] to render the raw point clouds and use them as
the groundtruth data. We describe how we generate training data
for K-Planes in Section 3.1.1.

The third dataset Blender is created by our team. It includes
three animated Blender 3D models, Lego [23], Pig downloaded
from Blender Market [7], Amily downloaded from Blender Demo
Files [6]. For the “Lego” model, we created animation raising and
lowering the bulldozer’s bucket by moving the control panel built
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Figure 1: Front-facing images all 11 testing traces. (a)-(d): 8iVFB dataset; (e)-(h): vsenseVVDB2 dataset; (i)-(k): Blender dataset. All

traces contain dynamic sequences that can be explored in 6-DoF.

in original .blend file. For “Pig” and “Amily” models, we used
the animations in the downloaded .blend file. Since V-PCC only
takes point cloud data .ply as input, for fair comparisons, we also
need to convert these three models in the Blender dataset into
point clouds. We emulate the process of capturing real-world point
clouds via RGB-Depth cameras within the Blender environment.
We must also note, however, that despite accurate camera intrinsics
and extrinsics data provided by Blender, due to other factors such
as depth data quantization, the recorded depth data is inherently
noisy, as with real-world LiDAR sensors [19, 20].

3.1.1 K-Planes Training Data Generation. For all three datasets,
we place the center of the model (.blend model or the imported
point cloud) at the origin (0,0,0). We follow the original NeRF
work [23] and generate K-Planes training data by placing virtual
cameras in the scene at 80 different positions, starting at position
(0,4.0,0.5), which is approximately 4.03 units away from the origin.
All 80 positions are obtained by rotation around the origin by a set
of randomly generated Euler angles. At any position, the virtual
camera is set to “look at” the origin. Since 9 out of 11 sequences
are persons, we limit the camera positions to the upper hemisphere
only. Note that with this setup, regardless of the camera positions,
the distance from the origin is not changed. For each frame in a
dynamic sequence, we render 80 views as recorded by 80 virtual
cameras with a resolution of 800x800 and save them as . png files.

3.1.2  Testing Data Generation. For comparing the visual quality
of rendered views, we generate ground truth testing data in a simi-
lar way as K-Planes training data generation. For the 81VFB and
Blender datasets, we use 20 views from 20 differently-positioned
cameras for testing. For the vsenseVVDB2 dataset, since we use all
300 frames of the dataset, we use views from 10 different perspec-
tives for evaluation. Besides, we set the same random seed for each
dataset to make sure all consecutive frames of each model have the
same camera parameters.

3.2 Comparison Metrics

To characterize the performance of different codecs, the video com-
pression community commonly uses the rate-distortion (RD) curve
e.g., [16, 30]. Here, “rate” represents the bitrate of the encoded
media content. “Distortion” represents the visual quality of the
compressed representation compared to the ground truth, uncom-
pressed, representation. In this work, we focus on two distortion
metrics: peak signal-to-noise ratio (PSNR) and video multi-method
assessment fusion (VMAF) proposed by Netflix [1].

To plot the RD-curve for V-PCC , we use five different gp combi-
nations described in common test conditions (CTC) by MPEG [25].
Details of the five settings are shown in Table 1. Among the five

Table 1: gp combinations used in V-PCC common test condi-
tions (CTC) [25]

qp settings rl | r2 | 13 |rd |15

Qg: ap for geometry map 32|28 | 242016

Q¢: gp for attribute (color) map || 42 | 37 | 32 | 27 | 22

Table 2: K-Planes overall settings

Multi-scale S=1,2; S=1,2,4; S=1,2,4,8
Time dimension | 30; 60; 75
Feature length F=4; F=8; F=16; F=32

configurations, r1 and r5 result in the lowest and highest bitrates,
respectively.

K-Planes uses multi-scale planes with different resolutions for
storing parameters. Following the setup in the K-Planes paper [14],
we consider four spatial scale settings, {1, 2, 4, 8}. With different
spatial scale settings, the resolution of the feature plane differs. For
example, with S = 1, each spatial feature plane has the resolution of
64x 64, and the scene contains 64° voxels. With S = 8, the resolution
of the spatial feature plane is 512 x 512. To inference the density
and color of a sample on a ray, features obtained from multi-scale
planes are concatenated before being passed into the MLPs. In our
experiments, we consider 3 different multi-scale settings, as shown
in Table 2. In addition, we consider the impact of setting the time
dimension to different values for representing the 4D volume. For
feature vector at a plane position, we consider four different feature
length settings: 4, 8, 16, and 32.

The RD-curve allows us to calculate the average difference in
bitrates among different encoding mechanisms under the same
distortion. This metric is called the Bjontegaard-Delta bitrate (BD-
rate) [3, 4, 10]. A negative BD-rate represent bitrate/bandwidth
savings while achieving the same visual quality and is thus consid-
ered better. Similarly, a BD-PSNR metric can be calculated, where a
positive number represents the improvement in PSNR while using
the same bitrate/bandwidth. We report numerical results of the
following metrics: BD-PSNR, BD-Rate,, calculated using PSNR as
the visual quality metric; BD-VMAF, and BD-Rate,, calculated using
VMAF.

4 K-PLANES RESULTS

In this section, we first characterize the performance of K-Planes
for dynamic 6-DoF video representation under different model
configurations. Specifically, we compare three multi-scale settings
as listed in Table 2 and two time dimension settings.

4.1 Multi-Scale Settings

Figure 2 shows the the RD-curve results, using PSNR and VMAF as
the visual quality metric, for the “Lego” sequence in the Blender
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Figure 2: RD-curve result for the “Lego” sequence when using
different numbers of spatial plane scales.

Table 3: BD-Rate|}, BD-PSNR{], BD-VMAF( results on scale
performance, using S=1,2 as the anchor for calculation.

Settings || BD-Rate,] BD-PSNR{] | BD-Rate,| BD-VMAF]
S=1,2 0% 0 0% 0
S=1,24 37.6% -0.29 15.7% -0.94
S=1,2,4,8 122.4% -1.09 68.1% -2.32

dataset. This sequence has 60 frames. We set the time dimen-
sion of the model to 30 (half of the number of frames as used
in K-Planes [14]). The figure shows three curves, representing the
RD-curve for multi-scale settings S=1,2; S=1,2,4; S=1,2,4,8, respec-
tively. For each curve, we vary the “rate” by using different feature
length F € {4, 8, 16,32} for the model. Overall, 12 K-Planes models
are trained, each using 40 training videos with a learning rate of
0.001. Following the configuration file used for K-Planes dynamic
scene training [14], we set the number of the training epochs to
120, 000. For each K-Planes model, 20 testing videos are used for
visual quality evaluation. We calculate the “rate” by considering the
frame rate of the sequence to be 30 frames-per-second (fps). That
is, 2 seconds to playback 60 frames in the sequence.

The RD-curves confirm that with larger feature length (thus
more parameters), the visual quality consistently improves. We
further analyzed the BD-Rate, BD-PSNR, and BD-VMAF results in
Table 3. Note here that BD-Rate,, is calculated using PSNR as visual
quality, while BD-Rate,, is calculated using VMAF. We use S=1,2,
the smallest multi-scale setting as the anchor setting for calculating
BD-* results. Results show that neither S=1,2,4 nor S=1,2,4,8 can
outperform the smallest multi-scale setting, S=1,2. Their BD-Rates
with respect to S=1,2 are positive, indicating more bitrates are
needed to reach the same visual quality; and their BD-PSNR and BD-
VMAF results are negative, indicating worse visual quality under
the same bitrates. Based on these findings, we focus the remaining
experiments of K-Planes on the S=1,2 multi-scale setting.

4.2 Time Dimension Settings

For representing a dynamic 3D scene, K-Planes includes six planes,
three space-only planes and three space-time planes. While the
space dimension is determined by the multi-scale settings, the time
dimension is typically set to half of the number of frames in the
dynamic scene [14]. We set to examine if by using larger time
dimension setting (and thus larger space-time planes) can help to
further improve the visual quality of highly dynamic scenes.

For this evaluation, we use the “Longdress” sequence from the
81VFB dataset. We use the first 60 frames from this sequence, and
we use two different time dimension settings: 30 and 60.

Na Li, Mufeng Zhu, Shuogian Wang, and Yao Liu
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Figure 3: RD-curve result for the “Longdress” sequence when
using different time dimension.

Table 4: BD-Rate|, BD-PSNRT{], BD-VMAFT| results on time
dimension, using time dimension=30 as the anchor. Results
show that the improvement is limited.

Settings BD-Rate,|] BD-PSNR{ | BD-Rate,|| BD-VMAF|
time_dim= 30 0% 0 0% 0
time_dim= 60 -4.0% 0.12 -4.4% 1.18

The RD-curve results for PSNR and VMAF are shown in Figure 3.
The “rate” in the figure is varied by using different feature lengths
F € {4,8,16,32}. The figure shows that these two different time di-
mension settings are comparable when compressing the “Longdress”
sequence. At lower bitrates, i.e., shorter feature lengths, setting the
time dimension to 30 gives better results; while at higher bitrates,
using larger time dimension helps. However, the improvement is
very limited. Table 4 shows the BD-Rate, BD-PSNR, and BD-VMAF
results. These results are obtained using time dimension 30 as the
anchor. Results show that by using the longer time dimension, the
bitrate can be reduced by approximately 4% while achieving the
same visual quality, and that the PSNR can improve by 0.12 dB with
the same bitrate.

Given that “Longdress” is among the sequences with the most
motion in our datasets, and that the improvement by using longer
time dimension is very limited, we choose to use shorter time
dimension (e.g., half of the number of frames) in the remaining
experiments.

4.3 Model Precision

Mixed precision. PyTorch provides an automatic mixed precision
package called TORCH.AMP [8]. It allows operations to use a mix-
ture of float32 and float16 precision. This allows us to explore
the feasibility of compacting the model by saving the model in
float16 and load the parameters later for inference. We note that
K-Planes also use float16 to speed up model training.
Further model compression. We explore lossless data compres-
sion via the zip tool [2] for further reducing the stored K-Planes
representation size. While the trained models vary for different
parameter settings and content, we observe that lossless data com-
pression can further reduce the saved model size by 25% to 54%.
We conduct the experiment using all 11 sequences from all three
datasets. For 81VFB and Blender datasets with 60 frames, we set
the time dimension to 30. For vsenseVVDB2 with 300 frames, we set
the time dimension to 75. The trained models are further losslessly
compressed via zip, and we use the . zip file size for calculating the
“rate” for the rate-distortion curve. Figures 4 shows the RD-curve
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Figure 4: RD-curve result for the Blender dataset: float16 vs.
float32.

Table 5: BD-Rate|}, BD-PSNR{], BD-VMAFT] results of float32
on the 8iVFB dataset, using float16 as the anchor. (When
using float16 as the anchor, results of float16 will be all 0s
and are thus omitted in the table. Negative BD-PSNR and
BD-VMATF results indicate that with the same model size,
the quality of views rendered from float16 models is better
compared to float32 models.)

Sequence BD-Rate,|] BD-PSNRf | BD-Rate,|| BD-VMAF(
Longdress 120.3% -1.67 120.2% -17.05
Loot 128.7% -2.74 128.9% -19.45
Soldier 166.7% -1.98 166.2% -5.73
Redandblack 119.5% -2.08 119.3% -18.99

Table 6: BD-Rate|}, BD-PSNR{], BD-VMAFT| results of float32
on the vsenseVVDB2 dataset, using float16 as the anchor.

Sequence || BD-Ratep] BD-PSNR{ | BD-Rate,] BD-VMAF(
Rafa 170.9% -2.15 171.3% -7.34
Lubna 163.6% -2.75 162.8% -10.44
Matis 132.7% -1.99 132.4% -15.15
Axeguy 174.1% -1.82 174.6% -7.44

Table 7: BD-Rate|}, BD-PSNRT), BD-VMAF(| results of float32
on the Blender dataset, using float16 as the anchor.

Sequence || BD-Ratep|] BD-PSNR{} | BD-Rate,] BD-VMAF(
Lego 115.7% -2.28 114.7% -14.92
Amily 142.6% -2.35 143.3% -11.47
Pig 128.9% -1.39 128.7% -12.45

results for both PSNR and VMAF for the Blender datasets. The
BD-Rate, BD-PSNR, and BD-VMAF results of the three datasets are
shown in Tables 5, 6, and 7. In these tables, the float16 results are
used as an anchor for calculating the BD-* results of using float32
for storing the trained model.

The RD-curve results show that the visual quality results of
float16 are comparable to float32 while float16 saves more
than half of the saved model size. The BD-PSNR results show that
when using the same bitrate for representing the dynamic scene, the
visual quality of float32is 1.39 dB to 2.75 dB worse than float16,
and the BD-VMAF results show that the VMAF results of float32
is 5.73 to 19.45 worse than float16. Thus, we will use float16
results for K-Planes vs. V-PCC comparison in the next section.

5 V-PCC VS. K-PLANES

In this section, we report our findings comparing V-PCC withK-Planes

for dynamic 6-DoF volumetric video representation. For V-PCC, we
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Figure 5: RD-curve result for the 8iVFB dataset.
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Figure 6: RD-curve result for the vsenseVVDB2 dataset.

compress the raw .ply files using five different quantization pa-
rameter settings in Table 1. We obtain the V-PCC compressed binary
file sizes and use them for calculating the “rate” in the RD-curve.
We then decode and reconstruct the point cloud .ply files, ren-
der them, and compare them with the groundtruth test views. For
K-Planes , we use multi-scale setting S=1,2, train the models for
150, 000 epochs with a learning rate of 0.001, and save the model
in float16. We further losslessly compress the saved K-Planes
models using the .zip tool and use the compressed . zip file for
calculating the “rate”. We do not use zip for compressed V-PCC
binary files as no data deflation can be achieved.

5.1 Results of 8iVFB and vsenseVVDB2 Datasets

We discuss the results of the 81VFB and vsenseVVDB2 datasets first
since both datasets are carefully curated raw point cloud data and
are made for V-PCC . The RD-curve results are shown in Figures
5 and 6. We notice that in a few cases, for V-PCC, with increased
rate, e.g., the r5 setting, the visual quality can become worse than
lower rate, e.g., the r3 setting. This finding is consistent with the
subjective study performed by Cox et al. [12]. We have also checked
our experiments and made sure it is the correct results. We thus
report these results in the paper.

We report the BD-PSNR and BD-VMAF results in Tables 8 and
9. (We do not report the BD-Rate results in these tables because
the RD-curves of comparative setups are very far away with no
overlap in their “distortion” coordinates.) The results show that
for the 8iVFB dataset, V-PCC outperforms K-Planes in all but one
(“Soldier”) sequence; while for the vsenseVVDB2 dataset, K-Planes
outperforms V-PCC in all but one (“Matis”).

We find that the performance of K-Planes and V-PCC appear
to be correlated with the amount of motion in the dataset. For
example, the four sequences that K-Planes perform well in (i.e.,
“Soldier”, “Rafa”, “Lubna”, and “AxeGuy”) are with little to moderate
motion. For the remaining four highly dynamic sequences, however,
K-Planes struggles to achieve a good performance, and V-PCC can
compress them better.



MMVE ’24, April 15-18, 2024, Bari, Italy

Na Li, Mufeng Zhu, Shuogian Wang, and Yao Liu

V-PCC r1 V-PCC r2

V-PCC r3

V-PCC r4 V-PCC r5

Figure 7: Visual quality comparison of “Lego” in the Blender dataset created by our team. The top row shows the groundtruth
view and views rendered by trained K-Planes models with different feature length F € {4, 8, 16,32} . The bottom row shows views
rendered by point clouds compressed by V-PCC in one of the five settings r1 (lowest bitrate), r2, r3, r4, and r5 (highest bitrate).

Table 8: 8iVFB dataset: BD-PSNR{} and BD-VMAFT| results of
V-PCC, using K-Planes as the anchor.

Sequence BD-PSNR{] BD-VMAF(
Longdress 3.20 39.58
Loot 2.20 30.11
Soldier -6.45 -21.29
Redandblack 0.49 21.20

Table 9: vsenseVVDB2 dataset: BD-PSNR{ and BD-VMAF(] re-
sults of V-PCC, using K-Planes as the anchor.

Sequence || BD-PSNR} BD-VMAF{}
Rafa -4.12 -10.10
Lubna -9.69 -45.45
Matis 0.76 23.68
Axeguy -6.06 -23.67

Table 10: Blender dataset: V-PCC results

Sequence Metric rl 12 r3 r4 5
PSNR (dB) 20.67 20.96 21.02 20.92 20.80
Lego VMAF 1.39 1.38 0.80 0.35 0.98

Size (MB) 5.23 11.13 2294 43.00 75.81
PSNR (dB) 26.55 26.29 25.63 24.97 24.92
Amily VMAF 865 550 095 0.01 0.01
Size (MB) 084 131 286 825 20.21
PSNR (dB) 29.94 29.94 29.39 28.67 28.68
Pig VMAF 2147 2157 1460 6.60  8.78
Size (MB) 1.37 201 446 1286 31.70

Table 11: Blender dataset: K-Planes results

Sequence Metric F=4 F=8 F=16 F=32
PSNR (dB) 25.97 27.96 29.07 30.01
Lego VMAF 38.78 51.19 5878 64.76
Size (MB) 128 170 248 4.1
PSNR (dB) 34.10 35.29 36.34 37.42
Amily VMAF 56.85 6332 68.76 72.97
Size (MB) 093 146 215 3.48
PSNR (dB) 35.73 37.16 37.79 38.08
Pig VMAF 4934 6145 66.56 70.78
Size (MB) 115 156 229 3.70

5.2 Results of the Blender Dataset

For the three models in the Blender dataset, we first generate point
clouds using a procedure that emulates real-world point cloud
capture via RGB-Depth images. For this evaluation, we use the
original textured mesh model for generating groundtruth test views.

We report our results in Tables 10 and 11. For V-PCC, while the
structural information of the scene is correct, the visual quality
is very low. For the “Lego” sequence, the PSNR is only about 20
dB; for “Amily”, and “Pig”, the PSNR results are lower than 30
dB. The obtained VMATF scores are also very low. We conjecture
that the poor visual quality of V-PCC is partially caused by the
point clouds recorded via RGB-Depth data, which is inherently
noisy. In comparison, the 8iVFB and vsenseVVDB2 datasets are
carefully curated. Additionally, another possible cause is that for
8iVFB and vsenseVVDB2 experiments, the groundtruth is rendered
using the raw, uncompressed point cloud; while for the Blender
experiments, the groundtruth is photorealistic rendering of the
model. This results in significantly lower visual quality of V-PCC.

For K-Planes, the results are substantially better. For “Lego”, the
PSNR can be as high as more than 30 dB; while for “Amily” and “Pig”,
the PSNR can reach over 37 dB, with a K-Planes representation size
of only about 4 MB (or 16 Mbps for the 2-second long sequence.)
We further present visual results of four sets of rendered views of
the “Lego” sequences in the Blender dataset in Figure 7.

6 CONCLUSION

In this paper, we performed a comparative study of a new dynamic
neural scene representation model, K-Planes, and V-PCC for repre-
senting and efficiently transmitting 6-DoF volumetric video data.
We find that for K-Planes, increasing the length of feature vectors
can improve the visual quality faster than increasing the number of
multi-scale planes. Results show that the current K-Planes models
can outperform V-PCC when there is little to moderate amount of
motion in the 6-DoF video sequence. We also find that in a volumet-
ric data capturing scenario emulated by Blender, the visual quality
of views rendered from K-Planes is significantly better than V-PCC.
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