
SGSS: Streaming 6-DoF Navigation of Gaussian Splat Scenes
Mufeng Zhu

Rutgers University

Piscataway, NJ, USA

mz526@rutgers.edu

Mingju Liu

University of Maryland, College Park

College Park, MD, USA

mliu9867@umd.edu

Cunxi Yu

University of Maryland, College Park

College Park, MD, USA

cunxiyu@umd.edu

Cheng-Hsin Hsu

National Tsing Hua University

Hsin-Chu, Taiwan

chsu@cs.nthu.edu.tw

Yao Liu

Rutgers University

Piscataway, NJ, USA

yao.liu@rutgers.edu

Abstract
3D Gaussian Splatting (3DGS) is an emerging approach for training

and representing real-world 3D scenes. Due to its photorealistic

novel view synthesis and fast rendering speed (e.g., over 100 FPS),

it has the potential to transform how scenes that can be explored

in 6 degrees-of-freedom (6-DoF) are represented. However, a limit-

ing factor of 3DGS is its large size, which requires high network

bandwidth for streaming reconstructed real-world 3D scenes.

In this paper, we propose SGSS for optimizing the streaming

transmission of 3DGS scenes during 6-DoF navigation. Since not all

Gaussians in the full scene are needed for rendering a user’s view,

SGSS uses view-adaptive streaming, enabled by optimized spatial

partitioning of the scene, for achieving network transmission sav-

ings. For each spatial partition, SGSS uses an importance-based

Gaussians pre-sorting scheme to enhance the initial view quality

and reduce the user-perceived scene loading time. We further de-

sign a client-side view-adaptive streaming algorithm that features

lightweight visibility checking, prioritized streaming, incremental

processing, and stream pausing/resuming schemes. We implement

SGSS with JavaScript and WebGL2. Evaluation results show that

the quality of views rendered with SGSS streaming is consistently

higher than or on parwith state-of-the-art approaches. Furthermore,

the view-adaptive streaming of SGSS can result in high savings in

network transmission without impacting the view quality.

CCS Concepts
• Information systems→Multimedia streaming; • Comput-
ingmethodologies→ Point-basedmodels; •Human-centered
computing→Mixed / augmented reality .

Keywords
3D Gaussian Splatting, View-Adaptive Streaming, Visual Quality

ACM Reference Format:
Mufeng Zhu, Mingju Liu, Cunxi Yu, Cheng-Hsin Hsu, and Yao Liu. 2025.

SGSS: Streaming 6-DoF Navigation of Gaussian Splat Scenes. In ACM Multi-
media Systems Conference 2025 (MMSys ’25), March 31-April 4, 2025, Stellen-
bosch, South Africa. ACM, New York, NY, USA, 11 pages. https://doi.org/10.

1145/3712676.3714437

This work is licensed under a Creative Commons Attribution 4.0 International License.

MMSys ’25, Stellenbosch, South Africa
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1467-2/25/03

https://doi.org/10.1145/3712676.3714437

5

6

B
as

ic
 C

ub
oi

ds

Streaming CuboidsViewport

HTTP/2/3
Enabled

Web
Server

Internet

JavaScript
& WebGL2

Enabled
Web Browser

Sorted Gaussians
in Each

Streaming Cuboid

.....

3

4

2

1

......

......

Figure 1: Illustration of our proposed SGSS streaming system.

1 Introduction
In recent years, both immersive applications and VR/AR devices

such as Apple Vision Pro have gained increased popularity among

users. This has resulted in an increasing demand for recording,

reconstruction, and streaming of real-world 3D scenes for provid-

ing immersive experiences that can be navigated in 6 degrees-of-

freedom (6-DoF) to users. Traditional representations of 3D scenes

include point clouds and triangular meshes. To capture real-world

3D scenes, raw point clouds can be obtained by fusing data recorded

sets of cameras and/or other sensors such as LiDAR sensors [1, 2].

Due to noises inherent in data produced by the sensors [3] and the

size of rendered points, point clouds can suffer from inaccurate ge-

ometry and “holes” in rendered views [4]. Reconstructing accurate

triangular meshes from point clouds is also challenging [5].

Recent advances in 3D reconstruction and novel-view synthe-

sis have seen the emergence of learned representations such as

NeRF [6] and 3D Gaussian Splatting (3DGS) [7], and much ef-

fort has been devoted to follow-up works of these representations,

e.g., [8–11]. Both NeRF and 3DGS represent 3D scenes via parame-

ters trained via gradient descent, given input images of the scene

recorded from different perspectives. While NeRF and its variants

can achieve photorealistic novel view synthesis, their main issue

is with the high computation overhead associated with volumetric

view rendering. As a result, it is presently infeasible to achieve

high-quality view rendering with high frames-per-second (FPS).

Compared to NeRF, 3DGS can achieve over 100 FPS rendering speed,

an order of magnitude faster than NeRF-like approaches [12].

3DGS is a point-based representation. It uses anisotropic 3D

Gaussians to represent the geometry of the 3D scenes. Unlike point

clouds that may suffer from “holes” in rendered views, each 3D

Gaussian is projected to a 2D splat (e.g., a circular/elliptical disc)

during rendering, which can occupy a larger extent than a single

https://doi.org/10.1145/3712676.3714437
https://doi.org/10.1145/3712676.3714437
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3712676.3714437

MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa Mufeng Zhu, Mingju Liu, Cunxi Yu, Cheng-Hsin Hsu, and Yao Liu

point’s projection. 3DGS has been shown to provide photorealistic

view synthesis with real-time rendering speed. Its main drawback,

however, is the large representation size. Each 3DGaussian occupies

over 200 bytes of space for storing its attributes such as position,

scale, rotation, and opacity. It also uses 48 spherical harmonics (SH)

coefficients for representing view-dependent color. To produce

a good representation of a scene, millions of Gaussians may be

needed, resulting in significant storage requirements. For example,

the trained 3DGS representation for the garden scene [11] contains
over 5.8 million Gaussians and is 1.4 GBytes.

To address the significant representation size of 3DGS, approaches

have been proposed to reduce the per-Gaussian size by only re-

taining the DC components of the SH coefficients while removing

the rest (45) coefficients. This can yield 180 bytes savings out of

248 bytes (72%) of each Gaussian [13]. Even so, due to the large

number of Gaussians in a scene, the total scene size is still large,

e.g., hundreds of MBytes. Recent research also proposed to reduce

the number of Gaussians without significantly impacting the view

quality. For example, Fan et al. propose to prune Gaussians based

on a global significance score calculated during training [10].

As an immersive media representation, 3DGS includes all the

information needed for viewing the scene from any position in any

orientation (thereby supporting 6-DoF navigation). However, at a

time, only part of the scene is visible in the user’s viewport. Down-

loading the full scene while only part of the data will be needed

inevitably results in wasted data. Furthermore, after requesting the

scene, the user expects to see a high-quality view of the scene as

soon as possible. So Gaussians within the viewport should be trans-

mitted first before others. To the best of our knowledge, however,

no existing work has considered optimizing the transmission of

Gaussians needed for rendering the user’s view. Some solutions

require the full 3DGS scene to be downloaded (a long time) before

views are rendered to the users [14]. Others support progressive

downloading and rendering of Gaussians, allowing the user to view

the scene before it is fully downloaded [13, 15]. Nonetheless, both

types of solutions end up downloading all Gaussians of the scene.

In this paper, we propose SGSS – Streaming 6-DoF navigation of

Gaussian Splat Scenes – for optimizing streaming of 3DGS scenes.

Figure 1 provides a high-level overview of the streaming system.

Optimized Spatial Partitioning for View-Adaptive Streaming.
First, since not all Gaussians are needed for rendering a view of the

scene, we propose view-adaptive streaming of Gaussians, which

can save network transmission. Due to the vast number (millions)

of Gaussians within a 3DGS scene, it is infeasible to use individual

Gaussians as the transmission scheduling unit. Instead, we propose

to spatially partition the 3DGS scene into non-overlapping cuboids

and use them to support view-adaptive streaming. To minimize the

expected network downloading under a view distribution pattern

while taking into account the overhead associated with using small

cuboids, we formulate an optimization problem to find the best way

to spatially partition the scene into cuboids.

Importance-Based Gaussians Pre-Sorting. Second, we propose
a ranking scheme for pre-sorting Gaussians within each cuboid

to enhance the initial view quality and reduce the user-perceived

scene loading time. The need to reduce the user-perceived scene

loading time is motivated by the “largest contentful paint” (LCP)

metric for measuring how quickly the main content of a webpage

is downloaded and becomes visible to the user [16]. Based on the

observation that Gaussians with higher opacity and larger scale

have a greater impact on the rendered view, our ranking scheme pri-

oritizes the streaming and rendering of these important Gaussians,

allowing meaningful views to be rendered faster.

SGSS Streaming Algorithm. Third, we design a view-adaptive

streaming algorithm for the client-side. It includes a lightweight

cuboid visibility test for checking which cuboids are inside the view-

port. Since all visible cuboids are streamed in a multiplexed connec-

tion in modern HTTP protocols, we design a practical scheme for

assigning priority weights to streams, based on each visible stream

cuboid’s density of Gaussian ellipsoids, contribution to the view-

port, and distance from the camera origin. The streaming algorithm

also supports incremental response (i.e., Gaussians) downloading

and processing, fully realizing the benefits of pre-sorting Gaussians

inside cuboids for faster initial visual quality improvements.

We implemented SGSS in JavaScript withWebGL2 and conducted

extensive experiments for evaluation. Results show that views ren-

dered with SGSS streaming are consistently of visual quality higher

or on par with state-of-the-art approaches. Furthermore, the view-

adaptive transmission of SGSS can result in 32.9% savings on av-

erage in network transmission. In summary, this paper makes the

following contributions:

• We propose optimized spatial partitioning of the 3DGS scene into

cuboids to support the viewport-adaptive transmission.

• We further propose importance-based Gaussians pre-sorting

within cuboids for enhancing the initial view quality.

• We design a viewport-adaptive streaming algorithm for 6-DoF

navigation of 3DGS scenes and implement our proposed solution

in JavaScript with WebGL2.

• Extensive experiment results show that SGSS can improve the

visual quality during the initial streaming phase and save network

bandwidth compared to state-of-the-art approaches.

2 Background and Related Works
Representation of each 3D Gaussian. A 3DGS scene is repre-

sented by a set of 3D Gaussians with their parameters optimized

through a training procedure via backpropagation. Each 3D Gauss-

ian is represented using information about its position (i.e., mean)

𝝁 = (𝜇𝑥 , 𝜇𝑦, 𝜇𝑧) ∈ R3
, a covariance matrix Σ ∈ R3×3

, color c, and
opacity 𝑜 ∈ R. To facilitate optimization of parameters using gra-

dient descent, the covariance matrix Σ is equivalently represented

as the scale and rotation of an ellipsoid [7]. That is, Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 ,

where 𝑆 ∈ R3×3
is a diagonal matrix, representing the scaling along

each of the 3 dimensions; and 𝑅 ∈ R3×3
is a 3D rotation matrix.

𝑆 is stored as s = (𝑠𝑥 , 𝑠𝑦, 𝑠𝑧) ∈ R3
, 𝑆 = diag(s); and the rotation

matrix 𝑅 is stored as quaternion q ∈ R4
. 3DGS further uses spheri-

cal harmonics (SH) for representing view-dependent color. For a

single color channel, with 𝑘 degrees of freedom, (𝑘 + 1)2 SH coeffi-

cients are needed. Given that 3 degrees of view direction freedom

is required, a total of 16 × 3 = 48 SH coefficients are needed for

R/G/B color channels. Overall, each 3D Gaussian needs to store 59

floating point numbers (236 Bytes) for representing the position

𝝁 ∈ R3
, scale s ∈ R3

, rotation quaternion q ∈ R4
, opacity 𝑜 ∈ R,

and view-dependent color c ∈ R3×(3+1)2
. 3D Gaussians are stored

in a .ply file, with each line of the file containing attributes of a

3D Gaussian.

SGSS: Streaming 6-DoF Navigation of Gaussian Splat Scenes MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa

3D Gaussian “splatting”.During rendering, 3D Gaussians are pro-

jected to 2D splats, such as circular or elliptical discs. This effectively

avoids the appearance of "holes" in the rendered views, an issue

with the traditional point-based representation like point clouds.

The projection is done by Σ′ = 𝐽𝑊 Σ𝑊𝑇 𝐽𝑇 , where Σ′ ∈ R2×2
is the

2D covariance matrix,𝑊 is the view transformation matrix, and 𝐽

is the affine transform approximation of the perspective projection

transformation [7, 17, 18].

Pixel rendering. Given a pixel 𝑖 , a list of overlapping Gaussians

can be obtained, transformed to the camera space, and sorted based

on their depth. With N sorted Gaussians, the color of pixel 𝑖 can

be obtained via alpha blending:

𝐶𝑖 =
∑︁
𝑛≤N

(
𝑐𝑛 · 𝛼𝑛 ·

∏
𝑚<𝑛

(1 − 𝛼𝑚)
)
,

where 𝛼𝑛 is computed using the 2D covariance matrix Σ′ and opac-

ity parameter 𝑜𝑛 [17].

Compression of 3DGS representations. Existing literature in

point cloud compression has explored efficient data structures such

as octrees (e.g., G-PCC [19, 20]) and kd-trees (e.g., Draco [21]) for

compressing the geometry information (i.e., point positions). For

compressing attributes (e.g., color) of point clouds, region-adaptive

hierarchical transform (RAHT) [22], quantization, and entropy cod-

ing can be used. For dynamic scenes (i.e., point cloud video), video-

based point cloud compression (V-PCC) leverages existing 2D video

codec [19]. Since 3DGS is a point-based representation, it can also

apply point cloud compression for compressing the geometry (i.e.,

positions of Gaussians) and other attributes, e.g., [23]. Since the

emergence of 3DGS, several 3DGS compression schemes have been

proposed. For example, Compact3DGS [24] proposes to i) reduce

the number of Gaussians by identifying non-essential Gaussians

with a masking strategy; and ii) compress the attributes by using a

grid-based neural field and vector quantization. LightGaussian [10]

proposes Gaussian pruning based on a global significance score

obtained during training and an SH distillation approach for reduc-

ing the attribute size. Compressed3DGS [25] uses vector quantiza-

tion [26, 27] for compression. It proposes sensitivity-aware vector

clustering for creating a compact codebook. While compression is

orthogonal to the tasks of our paper, we note that these compression

solutions can be integrated with our proposed approaches.

Transporting 3DGS over the network. gsplat [14] is one of the
earliest demo of 3DGS web viewers. However, it does not support

streaming of 3DGS, and users must wait for the full representation

to be downloaded to view the scene. GaussianSplats3D [15] is

another 3DGS web viewer based on JavaScript and WebGL. It pre-

sorts 3D Gaussians in the scene based on their distance from the

world origin (i.e., (0, 0, 0) in the world coordinate system). That is,

pre-sorting based on the L2 norm of 𝝁, | |𝝁 | |. In this way, Gaussians

are downloaded from the world origin going outward. However,

this scheme works well only if the viewport is centered at the world

origin. splat [13] also supports streaming, and it pre-sorts Gaus-

sians based on a metric considering both the scale and opacity. This

ensures that Gaussians with large volumes and high opacity are

downloaded first during streaming. Despite the pre-sorting, these

approaches download all Gaussians in the full scene regardless

of the user’s viewport, wasting network bandwidth. Unlike these

approaches, in this paper, we propose spatial partitioning of the

3DGS scene to enable view-adaptive streaming, saving network

bandwidth while maintaining or improving the quality of rendered

views. ViVo [28] is a state-of-the-art point cloud streaming ap-

proach. It can save streaming bandwidth by adjusting the point

density of each spatial cell based on its visibility in the viewport.

However, it does not work well for 3DGS streaming due to the

special characteristics of 3D Gaussians (Section 5.5).

3 Design of SGSS
We design SGSS to both enhance the visual quality during scene

streaming and achieve network bandwidth savings. The core of

SGSS is a view-adaptive streaming solution. Minimizing network

bandwidth requires only Gaussians within the viewport to be down-

loaded. However, individually checking the visibility of millions of

Gaussians and scheduling transmission is a daunting task. On the

other hand, transmitting the full scene without spatial partitioning

can result in the least visibility testing and scheduling overhead but

can lead to a significant amount of unused data to be downloaded.

To balance these two conflicting objectives, we propose optimized
spatial partitioning of the 3DGS scene in Section 3.1.

Since 3DGS is a representation with parameters of Gaussians

trained via a gradient descent approach, each Gaussian can con-

tribute differently to the final view, depending on its scale and opac-

ity, and Gaussians are not uniformly distributed in the scene. This is

different from traditional point clouds. Based on these unique char-

acteristics of 3D Gaussians, SGSS uses an importance scoremetric

(Section 3.2) to measure the importance of each Gaussian within

the streaming cuboid and pre-sorts the Gaussians accordingly. This

allows the most important Gaussians to be streamed first. SGSS
further implements an efficient viewport-adaptive streaming
algorithm for the client-side (Section 3.3). It uses a lightweight

scheme visibility checking of cuboids. It then prioritizes the stream-

ing of cuboids that contribute more to the rendering result, based

on a carefully-designed priority weight metric. In addition, SGSS
leverages modern HTTP protocol capabilities and supports incre-

mental cuboid downloading and processing, as well as pausing

and resuming unfinished downloads for enhancing the initial view

quality and quality improvement.

3.1 Optimized Spatial Partitioning of the Scene
We first generate an Axes Aligned Bounding Box (AABB) for the full

3DGS scene, based on the extent of the Gaussians’ positions in the

world coordinate system. We then partition it into basic cuboids
with the same size. The total number of basic cuboids in a scene

depends on the shape of the scene’s AABB, ensuring that each basic

cuboid approximates a cube. We define a streaming cuboid as a

partition of the scene that can be scheduled for streaming transmis-

sion. It is constructed by one or more basic cuboids. Suppose that

along the three dimensions (i.e., width, height, depth) of the AABB,

we divide the scene into 𝑖 , 𝑗 , and 𝑘 partitions, respectively. Then

the total number of basic cuboids is 𝑖 · 𝑗 · 𝑘 , and the total number of

possible, valid, streaming cuboids can be obtained using binomial

coefficients as:

𝑛𝑢𝑚_𝑣𝑎𝑙𝑖𝑑_𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔_𝑐𝑢𝑏𝑜𝑖𝑑𝑠 =

(
𝑖 + 1
2

)
·
(
𝑗 + 1
2

)
·
(
𝑘 + 1
2

)
. (1)

MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa Mufeng Zhu, Mingju Liu, Cunxi Yu, Cheng-Hsin Hsu, and Yao Liu

(0,0,0) (1,0,0)

(0,0,1) (1,0,1)

(0,1,1) (1,1,1)
Figure 2: This figure shows a simple ex-
ample where an Axes Aligned Bounding
Box (AABB) of a full 3DGS scene is parti-
tioned into 2x2x2 basic cuboids. With this
partitioning, a total of 27 possible cuboids
can be created (shown in Figure 3).

(0,1,0)

(0,1,1)

(1,1,0)(0,0,0) (1,0,0)

(1,1,1)(0,0,1) (1,0,1)

(a) (b) (c) (d)

(e) (f) (g) (h)

(0,1,1) (1,1,1)(0,0,1) (1,0,1)

(0,1,0) (1,1,0)(0,0,0) (1,0,0)

(i) (j)

(k) (l)

(0,0,0) (1,0,0)

(0,0,1) (1,0,1)

(m) (n)

(o) (p)

(0,1,1) (1,1,1)

(0,1,0) (1,1,0)

(0,1,0)

(0,1,1)

(0,0,0)

(0,0,1)

(1,1,0)

(1,1,1)

(1,0,0)

(1,0,1)

(q) (r) (s) (t)

(0,0,1) (1,0,1) (0,0,0) (1,0,0)

(u) (v)

(0,1,1) (1,1,1) (0,1,0) (1,1,0)

(0,0,0) (1,0,0)

(0,0,1) (1,0,1)

(y)

(0,1,0)

(0,1,1)

(1,1,0)

(1,1,1)

(z)

(0,0,0) (1,0,0)

(0,0,1) (1,0,1)

(aa)

(1,1,1)(0,1,1)

(0,0,0)

(0,0,1)

(1,0,0)

(1,0,1)

(w) (x)

(0,1,1) (1,1,1)

Figure 3: For an example scene with 2x2x2 basic cuboids, a
total of 27 possible cuboids can be created. In general, given
𝑖 × 𝑗 ×𝑘 basic cuboids, the number of valid streaming cuboids
can be obtained via Equation 1.

Figure 2 shows a simple example where a 3DGS scene is parti-

tioned into 8 (2x2x2) basic cuboids. In this case, 27 possible stream-

ing cuboids (labeled as (a), (b), ..., (z), and (aa) in Figure 3)

can be constructed from the 8 basic cuboids. To simplify the pro-

cess of checking whether a cuboid is within the viewport (Section

3.3), we require that the constructed streaming cuboid be a regu-

lar cuboid. For example, a combination of basic cuboids (0, 0, 0),
(1, 0, 0), (0, 0, 1), and (1, 0, 1) is valid. On the other hand, a combi-

nation of the following three basic cuboids (0, 0, 0), (1, 0, 0), and
(0, 0, 1) is invalid.

To formulate an optimization problem to determine the best spa-

tial partitioning of the scene, we use a binary vector
−→𝑥 to represent

the solution of selected streaming cuboids. Given a 2x2x2 example

shown in Figure 2,
−→𝑥 would be a binary vector with a length of

Position a b c d e f g h i j k l m n o p q r s t u v w x y z aa

(0,0,0) 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 1
(0,1,0) 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1
(0,0,1) 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1
(0,1,1) 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1
(1,0,0) 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1
(1,1,0) 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1
(1,0,1) 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1
(1,1,1) 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1

Figure 4: This table shows an example binary matrix A when
a scene is partitioned into 2x2x2 basic cuboids. This matrix
encodes how each of the 27 possible valid streaming cuboids
includes different sets of these 8 basic cuboids.

27 that shows the presence of each streaming cuboid in the solu-

tion. For ease of presentation, we use the label of the basic cuboids

along with a subscript to indicate the binary value. For example,

in [𝑎1,𝑏0,𝑐1,𝑑0,...,𝑙0,𝑚1,𝑛0...𝑧0,𝑎𝑎0], 𝑎1 represents streaming cuboid

𝑎 is present in the solution, 𝑏0 indicates streaming cuboid 𝑏 is not

present in the solution, and the solution only includes 3 streaming

cuboids, i.e., 𝑎, 𝑐 , and𝑚.

A valid solution
−→𝑥 should include streaming cuboids that cover

all the basic cuboids while ensuring no basic cuboids are covered

more than once. For example, [...,𝑜1,𝑝1,...,𝑢1,...] is a valid solution

including a streaming cuboid 𝑢 constructed with 2x2 basic cuboids,

two streaming cuboids constructed with 1x2 basic cuboids. On

the other hand, [...,𝑚1,...,𝑜1,𝑝1, 𝑢1,...] is invalid, since basic cuboids

(0, 0, 1) and (0, 1, 1) are covered by two different streaming cuboids

(𝑚 and 𝑢). [...,𝑚1,...,𝑜1,𝑝1,...] is also invalid, since basic cuboids

(1, 0, 1) and (1, 1, 1) are not included in any of the three selected

streaming cuboids (i.e.,𝑚, 𝑜 , and 𝑝).

We also build a vector

−−−−→
𝐶𝑛𝑢𝑚 to represent the number of Gaus-

sians inside each streaming cuboid. It has the same length as binary

vector
−→𝑥 .

Our optimization objective aims to minimize a cost function

given a distribution of views. This distribution of views can be

obtained from a dataset of prior users’ views of the same scene. For

each view 𝑣 , a set of basic cuboids is needed to render the view.

We thus use 𝑑𝑣 , a binary vector, to represent all possible streaming

cuboids that cover the basic cuboids required by view 𝑣 . In the

simple 2x2x2 basic cuboids example, given a viewport where two

basic cuboids (0, 0, 1) and (1, 0, 1) are visible, then 𝑑𝑣 is [𝑎1, 𝑏1, ...,
𝑖1, ..., 𝑚1, 𝑛1, ..., 𝑞1, 𝑠1, ..., 𝑢1, ..., 𝑤1, 𝑥1, 𝑦1,..., 𝑎𝑎1]. Given a valid

solution
−→𝑥 , the total number of Gaussians inside streaming cuboids

selected in
−→𝑥 is:

(−→𝑥)⊤diag(𝑑𝑣)
−−−−→
𝐶𝑛𝑢𝑚 . (2)

However, the actual number of Gaussians observed by view 𝑣 is

typically smaller than the total in all the selected streaming cuboids.

Thus, if the size of a streaming cuboid is too large, it will include

Gaussians outside the viewport (i.e., invisible), resulting in down-

loading bandwidth waste. Therefore, we use 𝐶𝑣 to represent the

actual number of Gaussians visible to 𝑣 , and calculate the ratio−−−−−→
𝑅𝑤𝑎𝑠𝑡𝑒 between the total number of Gaussians inside all selected

streaming cuboids and the actual number of visible Gaussians:

𝑅
(𝑣)
𝑤𝑎𝑠𝑡𝑒 =

𝑝𝑣 · −→𝑥 ⊤diag(𝑑𝑣)
−−−−→
𝐶𝑛𝑢𝑚

𝐶𝑣
, (3)

SGSS: Streaming 6-DoF Navigation of Gaussian Splat Scenes MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa

where 𝑝𝑣 represents the viewing probability of 𝑣 , and
∑
𝑝𝑣∈v = 1.

The smaller 𝑅𝑤𝑎𝑠𝑡𝑒 , the fewer wasted Gaussians. However, if we

simply minimize 𝑅𝑤𝑎𝑠𝑡𝑒 , the optimal solution will be all the basic

cuboids, meaning the largest number of streaming cuboids. With

the increasing amount of streaming cuboids, the amount of time

needed for checking if each streaming cuboid is within the user’s

viewport also increases, i.e., the “cuboid visibility test” against the

view frustum. For a valid solution
−→𝑥 , the total times for visibility

test 𝐶𝑑 is calculated as:

𝐶𝑑 =
−−−−→
𝐶𝑛𝑢𝑚′

⊤ · −→𝑥 , (4)

where

−−−−→
𝐶𝑛𝑢𝑚′ is a binary version of the original

−−−−→
𝐶𝑛𝑢𝑚 by keeping

all the zero elements and replacing all the non-zero elements with

1, which can filter the empty cuboids in the solution. The larger

the total times for the visibility test, the longer time we need to

wait before downloading the required cuboids. Therefore, we need

to minimize the total visibility test times, while in the meantime,

maintaining the smallest number of wasted Gaussians. Here we use

a new vector
−−−−→𝑥𝑏𝑎𝑠𝑒 to represent a solution of

−→𝑥 when all the basic

cuboids are selected. Then the maximum visibility test times are:

𝐶𝑑𝑚𝑎𝑥 =
−−−−→
𝐶𝑛𝑢𝑚′

⊤ · −−−−→𝑥𝑏𝑎𝑠𝑒 . (5)

Similar to 𝑅𝑤𝑎𝑠𝑡𝑒 , we introduce 𝑅𝑣𝑡𝑒𝑠𝑡 to represent the ratio

between the visibility test times of the current solution and the

maximum visibility test time:

𝑅𝑣𝑡𝑒𝑠𝑡 =
𝐶𝑑

𝐶𝑑𝑚𝑎𝑥

. (6)

Finally, we build a binary matrix 𝐴 to encode the constraints of

the optimization. Each row in 𝐴 represents how a specific basic

cuboid is included in the possible set of streaming cuboids, and

each column encodes which basic cuboids are included in a specific

streaming cuboid. For the simple 2x2x2 basic cuboids example,

we show the content of matrix 𝐴 (an 8x27 matrix) in Figure 4. For

instance, the value at row (1, 0, 0) and column 𝑠 is 1, since streaming

cuboid 𝑠 includes basic cuboid (1, 0, 0).
Our ILP formulation for this problem is defined as follows:

minimize: 𝑅𝑣𝑡𝑒𝑠𝑡 +
∑︁
𝑣∈v

𝑅
(𝑣)
𝑤𝑎𝑠𝑡𝑒

subject to: 𝐴−→𝑥 =
−→1 .

Here,

−→1 is a vector of 1’s with the same size as the binary solution

vector of streaming cuboids
−→𝑥 . The solution vector

−→𝑥 determines

a set of streaming cuboids for downloading that can lead to a mini-

mized total number of wasted Gaussians and detection time of all

the streaming cuboids.

3.2 Importance Sorting in Each Streaming
Cuboid

In addition to spatial partitioning, SGSS also leverages features of

modern HTTP protocols, i.e., HTTP/2 [29] and HTTP/3 [30], for im-

proving scene loading quality for the users. These features include

stream multiplexing where multiple requests/responses share the

same transport-layer connection. When combined with responses

that can be “incrementally” processed (e.g., chunks of a JPEG image

or progressive JPEG), it can reduce the user-perceived webpage

loading time. To fully take advantage of these features, SGSS pre-
sorts Gaussians in each streaming cuboid based on an importance
score. That is, during scene streaming, requests/responses for mul-

tiple streaming cuboids within the viewport are multiplexed in the

same connection. This ensures that each visible streaming cuboid

contributes to the initial rendered view. The most important Gaus-

sians in each streaming cuboid in the viewport are streamed and

rendered first, enhancing both the initial viewport quality and the

speed of quality improvement.

Importance score. Unlike traditional point cloud where points are
typically rendered as spheres or cubes of the same size, in 3DGS,

each Gaussian can have different scale and opacity attributes. The

size of the Gaussian “splat” on the rendered view can vary based on

its scale, and its contribution to the final pixel color can be different

depending on its opacity. A Gaussian with a very small scale and

low opacity (i.e., nearly transparent) will be barely visible compared

to a Gaussian with a larger scale and full opacity. This means by

streaming and processing Gaussians that have a greater impact

on the rendering first, both the initial quality and the speed of

quality improvement can be enhanced. This motivated us to pre-sort

Gaussians within each streaming cuboid based on an importance

score calculated based on the scale and opacity of a Gaussian. We

define the importance score (IS) as

𝐼𝑆 (𝑖) = 𝑜 (𝑖) ·
(
𝑠
(𝑖)
𝑥 · 𝑠

(𝑖)
𝑦 · 𝑠

(𝑖)
𝑧

𝑆max_𝑛

)𝛽
, (7)

where 𝑜 (𝑖) represents the opacity of the 𝑖𝑡ℎ 3D Gaussian, and

𝑠
(𝑖)
𝑥 , 𝑠

(𝑖)
𝑦 , 𝑠

(𝑖)
𝑧 represent its scale. 𝑆max_𝑛 represents the 𝑛𝑡ℎ per-

centile scale product value (i.e., 𝑠𝑥 · 𝑠𝑦 · 𝑠𝑧) of all 3D Gaussians

in the scene. 𝑛 = 90 and 𝛽 = 0.1. This importance score was in-

spired by the global significance score proposed by Fan et al. [10].

We show in Section 5.2 that pre-sorting Gaussians based on the de-

fined importance score can effectively improve view quality during

the initial scene loading.

3.3 SGSS Streaming Algorithm
During streaming, the client first obtains information about all the

streaming cuboids for the 3DGS scene that is available at the server

in a .json file. SGSS supports view-adaptive streaming of 3DGS

scenes by first performing cuboid visibility tests to determine a list

of visible streaming cuboids for downloading. It designs a novel

scheme for assigning priority to the streaming cuboids based on

their Gaussian density, contribution to the viewport, and distance

from the camera origin. It also fully supports incremental cuboid

downloading and processing, allowing downloaded cuboids to be

rendered promptly. A simplified version of the SGSS streaming

algorithm is shown in Algorithm 1.

Cuboid Visibility Test. Viewport-aware streaming requires the

streaming client to check if a streaming cuboid is inside the user’s

viewport, i.e., if the cuboid intersects with the view frustum. Using

simple collision detection algorithms for AABB or OBB (Oriented

Bounding Boxes) detection [31] is not accurate enough and can

lead to false positives, resulting in unnecessary data downloading.

Instead, we use the Separating Axis Theorem [32] to detect whether

a streaming cuboid collides with the current user’s view frustum.

Since the view frustum’s near plane is usually set to a very small

MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa Mufeng Zhu, Mingju Liu, Cunxi Yu, Cheng-Hsin Hsu, and Yao Liu

Algorithm 1 SGSS Streaming Algorithm

1: Initialize downloading manager

2: if the viewport has changed then
3: ⊲ Obtain a list of visible cuboids for the current view

4: cuboid_list← visibility_test(all_cuboids, viewport)
5: ⊲ Calculate priority weight

6: for 𝑐𝑢𝑏𝑜𝑖𝑑 in cuboid_list do
7: calculate priority weight 𝑃 based on Equations 9 and 10

8: ⊲ Streaming of cuboids

9: for 𝑐𝑢𝑏𝑜𝑖𝑑 in cuboid_list do
10: if 𝑐𝑢𝑏𝑜𝑖𝑑 is not yet fully downloaded then
11: 𝑟𝑎𝑛𝑔𝑒 ← downloading_manager(𝑐𝑢𝑏𝑜𝑖𝑑)
12: if 𝑐𝑢𝑏𝑜𝑖𝑑 is not being downloaded then
13: request 𝑐𝑢𝑏𝑜𝑖𝑑 with priority and range

14: else if 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ≠ current_priority then
15: update request 𝑐𝑢𝑏𝑜𝑖𝑑 with new priority/range

16: for cuboids that are downloading but no longer visible do
17: pause the downloading

value – much smaller than the shape of a basic cuboid, we sim-

plify the view frustum into a pyramid shape. For each streaming

cuboid, we first convert all eight vertices’ coordinates from world

coordinates to camera coordinates, using the following equation

[𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐] = (𝑅𝑐)𝑇 ∗ ([𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤] − [𝑐𝑥 , 𝑐𝑦, 𝑐𝑧]), (8)

where [𝑥𝑤 ,𝑦𝑤 ,𝑧𝑤] represents a vertex’s position in the world coor-

dinate system, 𝑅𝑐 is the camera’s rotation matrix, and [𝑐𝑥 ,𝑐𝑦 ,𝑐𝑧] is

the camera’s position in the world coordinate system.

We then project the cuboid to three planes, i.e., 𝑥𝑦, 𝑥𝑧, and 𝑦𝑧

planes of the camera’s coordinate system, respectively, resulting

in three polygons. We also project the view pyramid to the same

three planes, resulting in two triangles and one rectangle. To decide

if a cuboid is inside the view pyramid, we check if two polygons

intersect using point-in-polygon detection and edge intersection de-

tection. If the projection of the cuboid intersects with the projection

of the view pyramid on all three planes, the cuboid is visible.

Prioritized Streaming. SGSS uses modern HTTP protocols for

downloading all visible streaming cuboids in HTTP/2/3 streams.

With HTTP/2/3 stream multiplexing, the downloading of stream-

ing cuboids share the same transport-layer connection. While this

allows important Gaussians in all streaming cuboids within the

viewport frustum to be downloaded and displayed, it can inevitably

lead to inefficient use of network bandwidth during the initial start-

ing phase of the streaming. For example, not all visible streaming

cuboids contribute equally to the overall rendering quality. Some

visible streaming cuboids may be either not completely visible in

the viewport or far away from the viewport. Among these stream-

ing cuboids, some with a high density of Gaussians may use a high

percentage of available network bandwidth while contributing little

to the increase of visual quality.

To address the above challenge, we define a priority weight

for each streaming cuboid given a viewport. We use this priority

weight with the Extensible Prioritization Scheme for HTTP [33].

This weight considers both the density of Gaussians inside and the

cuboid’s contribution to the rendered viewport. The priority weight

𝑃𝑊 of a streaming cuboid 𝑐 given a viewport 𝑣 is calculated as:

𝑃𝑊
(𝑐)
𝑣 =

𝜌 (𝑐) ∗𝑉 (𝑐)𝑣

𝑧
(𝑐)
𝑣 + 𝜀

. (9)

Here, 𝜌 (𝑐) represents the density of Gaussian ellipsoids of inside

streaming cuboid 𝑐 , 𝑉
(𝑐)
𝑣 is the visibility factor, which is the cal-

culated as the ratio of pixels in the rendered viewport 𝑣 that are

occupied by streaming cuboid 𝑐 , and 𝑧
(𝑐)
𝑣 represents the z-distance

between the center of streaming cuboid 𝑐 and viewport 𝑣 . We set a

very small value 𝜀 to avoid the distance to be 0. Since 𝑃𝑊 can range

from thousands to values smaller than 1, we apply a logarithmic

function to compress the range to approximately -10 to 10. The

final priority weight 𝑃 for a streaming cuboid is

𝑃
(𝑐)
𝑣 = 𝑙𝑜𝑔10 (𝑃𝑊 (𝑐)𝑣). (10)

We then map the priority 𝑃 to the priority values supported by

the Fetch Priority API [34]. For example,

fetchpriority =

{
high 𝑃 ≥ 1

low 𝑃 < 1

In addition, due to the high computational cost of pixel-level

visibility factor calculations, we set the fetchpriority to 𝑙𝑜𝑤 for

cuboids with a density lower than 10, regardless of their visibility

factor and distance.

Supporting Incremental Cuboids Downloading/Processing.
Gaussians received in each HTTP/2/3 stream are incrementally

parsed, loaded to the GPU memory, and rendered. These streams,

however, may not be aware of each Gaussian’s memory boundary

during their transport over the connection. That is, while infor-

mation on each Gaussian is saved in a certain order, e.g., position,

scale, color, and rotation (as adopted by SGSS), the actual data deliv-
ery may break the per-Gaussian boundary, leading to incomplete

Gaussian information being downloaded and incrementally parsed.

For example, a data chunk might contain only𝑌 bytes of a Gaussian

of 𝑋 bytes, where 𝑌 < 𝑋 . When a new data chunk for a different

cuboid arrives, its position and attributes could be mistaken for the

missing bytes from the previous Gaussian. This can result in mis-

aligned information of Gaussians being sent to the WebGL vertex

shader [35], rendering incorrect views. To address this issue, we

design a breakpoint handler that keeps track of the exact byte

offset where data for each cuboid was left incomplete. When a new

data chunk for the same cuboid arrives, the handler checks how

many bytes were missing from the last incomplete data chunk of

this cuboid and fills in the missed value. It then calculates howmany

Gaussians are in the remaining bytes of the current data chunk and

allocates memory for them. With the breakpoint handler, SGSS fully
supports incremental cuboid downloading and processing while

ensuring correct view rendering.

Stream Pause and Resumption.When the viewport changes, the

visible streaming cuboids and the visibility factor of each streaming

cuboid may change as well. Therefore, we use a downloading man-

ager to record how many bytes have been downloaded for each

streaming cuboid. For the cuboids to become invisible, we abort

the current HTTP stream, ceasing transmission of the invisible

cuboid. If the cuboid later becomes visible again, we will send a

new HTTP range request with its Range header field set to bytes

SGSS: Streaming 6-DoF Navigation of Gaussian Splat Scenes MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa

recorded by the downloading manager to resume the downloading.

For streaming cuboids with priority changes, we will first abort the

current downloading and then send a new request with updated

priority and Range field in the header.

4 Implementation
We implemented SGSS with JavaScript and WebGL2 within a fork

of the splat [13] repository. In addition to the sorting worker

designed in splat, we implemented two additional web workers

to support our viewport-adaptive streaming
1
. A visibility and

priority web worker is used for testing the visibility of streaming

cuboids and calculating the priority of each visible streaming cuboid.

It sends the information about visible streaming cuboids to the

streaming web worker, which sends requests to the server and

receives the Gaussians in HTTP responses. We create a simple

HTTP server using H2O [36], which supports HTTP/2/3 protocols.

Each pre-trained 3DGS scene is pre-processed offline by a Python

script. Given an existing distribution of user views for a scene, it

generates spatially-partitioned cuboids based on ILP results. For

solving the ILP, we used Gurobi Optimization [37]. For each stream-

ing cuboid, we pre-sort the Gaussians according to their importance

score ranking. For each Gaussian, we store its information with its

original float32 type in the following order: position (12 bytes), scale

(12 bytes), SH coefficients, opacity (4 bytes), and rotation (16 bytes).

We then store all the streaming cuboids in the HTTP server. We also

store the spatial information of each streaming cuboid, including

the maximum and minimum spatial coordinates and the density

of Gaussian in a .json file, which will be shared with the client

at the beginning of the streaming session. We have implemented

WebGL vertex shaders that can support rendering Gaussians with

spherical harmonics of varying degrees (SH0, SH1, SH2, and SH3).

These SH coefficients are converted to RGB color inside the vertex

shader. We only present SH0 results in the paper due to space.

5 Performance Evaluation
5.1 Setup
3DGS scenes.We use 12 pre-trained 3DGS scenes from the original

3DGS paper [7] in our experiments. We did not include the counter
scene as this scene is the smallest among all, and the full scene can be

downloaded in a very short amount of time. The 12 scenes are from

the MipNeRF360 dataset [11], the Tanks&Temples dataset [38], and

the Deep Blending dataset [39]. These datasets contain a variety of

scene settings, including indoor, outdoor, and natural environments.

Baseline approaches.We use six baseline approaches in our exper-

iments, summarized in Table 1. We first compare SGSS with three

state-of-the-art third-party web-viewers implemented based onWe-

bGL. FD refers to gsplat [14] that waits for full scene downloading
before view rendering. DWO refers to Gaussian-Splat3D [15],

which pre-sorts 3D Gaussians based on their distance to the origin

(0, 0, 0) of the world coordinate system. It supports 3DGS scene

streaming, but visible content is expanded from the world origin

as Gaussians are downloaded. IM refers to splat [13], which pre-

sorts all 3D Gaussians based on their scale and opacity values. 3D

Gaussians with large scale and opacity values are streamed first.

None of the above baseline approaches are view-adaptive.

1
The repository of this project is at https://github.com/symmru/SGSS.

Table 1: Baseline approaches used in the evaluation.

FD [14] Full scene Downloading before rendering

DWO [15]

Rendering while streaming; Gaussians are

pre-sorted based on Distance from World

Origin

IM [13]

Rendering while streaming; Gaussians are

pre-sorted based on an ImportanceMetric

ViVo [28]

Bandwidth-efficient point cloud streaming

through visibility-based point density ad-

justment

Ours-{w/o OSP}
SGSS but without optimized spatial parti-

tioning, i.e., with basic cuboids only

Ours-{w/o IS} SGSS but without importance sorting

We also compare our method with state-of-the-art viewport-

adaptive volumetric scene streaming method, ViVo [28]. To sup-

port bandwidth-efficient streaming, ViVo streams fixed-size cells

(a concept very similar to basic cuboids in our design) and adjusts

the point density of each cell based on its visibility. To evaluate the

effectiveness of our optimized spatial partitioning (OSP), we design

a baseline approach Ours-{w/o OSP} where only basic cuboids are

used for scene streaming. We also compare with Ours-{w/o IS},
where Gaussians inside the streaming cuboids are not sorted.

Two sets of viewing traces. For our experiments, we generate two

sets of user viewing traces derived from the camera poses of images

in the raw dataset of the 12 3DGS scenes. The first set of viewing

traces simulates an orbital shot, emulating the user behavior over

80 seconds. During this period, the user navigates through 40 cam-

era poses from the scene’s training dataset, one every 2 seconds.

Between two adjacent camera poses, we uniformly interpolate 119

frames, enabling smooth 60 FPS rendering. These 40 camera poses

allow the user to explore the full scene. With this viewing trace, we

aim to demonstrate how visual quality evolves over time as more

Gaussians are downloaded and the user’s viewport moves. We also

design a dolly shot for evaluation of total downloaded data. This

shot only navigates a portion of the scene. To do so, we use the first

two training camera poses for the scene and uniformly interpolate

1,199 frames between them. The user’s viewport moves slowly and

smoothly from one camera pose to the other in 20 seconds.

For each experiment, we replay the generated viewing trace and

record the rendering result in WebGL when the viewport is located

at a training camera pose. We use the original training images as

ground truth for calculating the visual quality of rendered views.

Evaluation metrics. For visual quality evaluation, we use three

metrics: peak signal-to-noise ratio (PSNR), structural similarity

(SSIM) [40], and perceptual video quality metric VMAF [41, 42] for

comparing visual quality of views rendered to the user and ground

truth camera-recorded images. We also record the total down-
loaded data amount (e.g., in MBytes) to show the effectiveness of

our approach in reducing wasted network transmission.

Network bandwidth settings. To evaluate how our proposed

SGSS approach and baseline approaches perform under different

available network bandwidth, we choose three different bandwidth

settings in our experiments: 100 Mbit/s, 150 Mbit/s, and 200 Mbit/s.

We use the tc [43] tool to emulate different available bandwidth be-

tween the server and the 3DGS viewing client and set the maximum

client-server network latency to 20ms round-trip. For orbital shot

https://github.com/symmru/SGSS

MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa Mufeng Zhu, Mingju Liu, Cunxi Yu, Cheng-Hsin Hsu, and Yao Liu

10 20 30 40 50 60 70 80 90
Percentage

12
14
16
18
20
22

Av
er

ag
e

PS
NR

Ours
Opacity-only
Scale-only
Unordered

10 20 30 40 50 60 70 80 90
Percentage

0.45
0.50
0.55
0.60
0.65
0.70

Av
er

ag
e

SS
IM

Ours
Opacity-only
Scale-only
Unordered

Figure 5: Comparison of different pre-sorting criteria.

traces, we evaluate the visual quality of all four methods under

three bandwidth settings. For dolly shot traces, focusing on the

bandwidth savings, we only evaluate the performance under 200

Mbit/s. This ensures that all visible content in the scenes can be

fully downloaded within 20 seconds of the viewing traces.

5.2 Pre-Sorting Criteria Results
To show the effectiveness of our importance sorting, we compare

it with three other sorting criteria: scale-only, opacity-only,
and unordered. scale-only ranks Gaussians solely based on their

scales, opacity-only ranks Gaussians based on their opacity only,

while unordered preserves the original order of Gaussians as they

are trained. We evaluate 12 distinct 3DGS scenes. For each criterion,

we pre-sort all Gaussians in the full .ply file according to the

respective criterion. We then save the first 10%, 20%, ..., 90% of the

sorted Gaussians and use them for rendering two different views in

WebGL. These two views are also the same as the first two camera

poses used to generate orbital shot traces, which can be used

to show the visual quality of initial views during streaming. We

calculate the average visual quality results across scenes for each

percentage, using the original camera images as the ground truth.

Figure 5 shows the average PSNR and SSIM values from 12 scenes.

Our pre-sorting criteria demonstrate both higher initial visual qual-

ity and faster improvement in both metrics and significantly out-

perform non-sorting methods, demonstrating the necessity of this

step. By incorporating both opacity and scale features in our sorting

criteria, we achieve better results compared to approaches that con-

sider these features independently. These findings indicate that the

visual quality will increase the fastest with our pre-sorting criteria.

5.3 Spatial Partitioning Results
Table 2 shows the optimized spatial partitioning results from integer

linear programming (ILP). For large scenes, we partition the 3DGS

scenes into more basic cuboids. Truck is a scene with both small

AABB size and file size, we therefore partition it into 10x10x3 basic

cuboids in total. We are unable to find an existing dataset of users

exploring these 12 3DGS scenes in 6-DoF. So we use the camera

poses from training images of the original datasets as distribution

of views, with each camera pose sharing the same view probability

to set up the ILP. For each scene, the number of camera poses varies

from 125 to 311. In Table 2, Non-Empty basic cuboids are cuboids

with at least one 3D Gaussian. However, there exist many non-

empty cuboids with only a few hundreds of Gaussians or even only

one Gaussian. Low-Density represents the cuboids with a Gaussian

density (as described in Equation 9) of less than 1. As discussed

in Section 3.1, each of these cuboids takes the same time for the

view frustum “visibility test”. Our formulated optimization problem

aims to reduce the number of selected streaming cuboids. Table 2

indicates that the ILP effectively works for our purpose. We can

Table 2: Spatial partitioning results.

Scene
of Basic Cuboids # of Solved/Selected

Total Non-Empty
Low-

Density
Streaming
Cuboids

Low-
Density

bicycle 2000 243 134 32 5

bonsai 1000 243 87 42 0

drjohnson 1000 285 79 112 3

flowers 1000 144 75 19 3

garden 2000 269 71 32 1

kitchen 2000 267 98 16 2

playroom 1000 431 94 139 2

room 1000 109 47 23 1

stump 2000 329 221 55 14

train 2000 237 177 9 4

treehill 2000 186 148 22 6

truck 300 108 52 16 2

reduce the number of selected streaming cuboids to roughly 4% to

40% of non-empty basic cuboids.

5.4 SGSS vs. Non-Viewport-Adaptive
We first compare SGSS with three state-of-the-art 3D Gaussian

web-viewers, namely, FD, DWO, and IM.

Visual quality results. None of the three baseline approaches

support viewport-adaptive streaming. Even with our smallest band-

width setting, they can finish full scene downloading within the

first 30 seconds. We thus only show the results in the first 30 sec-

onds. Benefiting from spatial partitioning, SGSS only downloads

the streaming cuboids inside the viewport during the first 30 sec-

onds. The total downloaded bytes are thus barely affected by the

bandwidth change. Therefore, we present the comparison results

under the smallest bandwidth setting, 100 Mbit/s.

Figure 6 shows the PSNR and SSIM results of three baseline

approaches and SGSS. Compared to FD and DWO, our method

achieves significantly better initial visual quality. FD takes a long

time to download the scene. For large scenes like stump and flowers,
it takes more than 20 seconds to achieve a reasonable visual quality.

DWO performs better when the initial viewport looks at the scene’s

world origin. However, when the initial viewport is not looking at

the world origin in the first 2 seconds, DWO leaves a huge blank in

the viewport. Compared to DWO, our method downloads 3D Gaus-

sians inside the user’s viewport first, yielding better visual quality,

shown in Figure 7. Besides, the density of Gaussians around world

origin also affects the performance of DWO. In truck, the density
of Gaussians close to the world origin is very high, therefore, it

takes a long time for DWO to download these Gaussians, leaving

the part close to viewport edges blank.

SGSS also yields better or similar initial visual quality results

compared to IM. This is because both methods stream the 3D Gaus-

sians with higher opacity and scale first. Different from our method,

IM pre-sorts Gaussians over the full scenes, while we sort the Gaus-

sians inside each streaming cuboid. If 3D Gaussians with higher

importance metrics are concentrated in the background of the ini-

tial viewport, IM can potentially perform better than us in terms

of the objective quality metrics in the first few seconds. This is be-

cause SGSS prioritizes streaming of cuboids closer to the viewport.

However, if the Gaussians with higher importance are distributed

uniformly around the scene, such as stump, the initial quality and

SGSS: Streaming 6-DoF Navigation of Gaussian Splat Scenes MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa

(a) PSNR (dB)↑ comparisons

(b) SSIM↑ comparisons

Figure 6: Visual quality comparison: SGSS vs. non-viewport-
adaptive approaches under 100 Mbit/s and orbital shot traces.

(a) View rendered with the DWO
approach. PSNR = 10.71 dB

(b) View rendered with our SGSS
approach. PSNR = 30.66 dB

Figure 7: Side-by-side comparison: rendering result of
drjohnson at the 6th second under 100 Mbit/s bandwidth.

the growth rate of visual quality will be severely affected. Compared

to IM, our streaming method only focuses on the Gaussians inside

the viewport, limiting the bandwidth wasted due to transmissions

of Gaussians outside the viewport with higher significance scores.

Bandwidth savings results. Table 3 shows the total bandwidth
consumption in 20 seconds under 200 Mbit/s bandwidth based on

the dolly shot traces. With limited navigation of the viewport, only

part of the scene can be viewed in 20 seconds. FD, DWO, and IM
all download full scenes. However, our method only downloads the

Gaussians in visible streaming cuboids. Notably, our method can

save up to 71.47% bandwidth while streaming the drjohnson scene.
Sometimes 3D Gaussians may be concentrated in one streaming

cuboid, such as the table in the garden scene, and have a higher

chance of being viewed, we have to download them completely.

Table 3: Total downloaded data under 200 Mbit/s and dolly
shot traces.

Scene DWO/IM/FD SGSS (Ours)
bicycle 343.4 MB 223.8 MB (-34.82%)
bonsai 69.7 MB 36.2 MB (-48.06%)

drjohnson 190.7 MB 54.4 MB (-71.47%)
flowers 203.6 MB 162.5 MB (-20.19%)
garden 326.7 MB 241.6 MB (-26.05%)
kitchen 103.7 MB 90.1 MB (-13.11%)
playroom 142.6 MB 59.2 MB (-58.49%)
room 89.2 MB 77.1 MB (-13.57%)
stump 277.9 MB 152.4 MB (-45.16%)
train 57.5 MB 53.3 MB (-7.30%)
treehill 211.9 MB 179.0 MB (-15.53%)
truck 142.3 MB 83.6 MB (-41.25%)

(a) PSNR (dB)↑ comparison with ViVo

(b) SSIM↑ comparison with with ViVo

Figure 8: Visual quality comparison: SGSS vs. ViVo under 200
Mbit/s and orbital shot traces.
Therefore, the amount of saved bandwidth may vary. Nevertheless,

on average, SGSS can achieve 32.9% network bandwidth savings.

5.5 SGSS vs. ViVo
Figure 8 shows that the visual quality of SGSS is significantly better
than ViVo. This is because ViVo decreases the density of the cells

occluded by others and far away from the view origin. However,

due to the special geometry features of a 3DGS scene, Gaussians are

not uniformly distributed across the cell. This results in the “fake

occlusion” problem, where a cell is occluded by other cells while

the Gaussians inside are not. As a result, due to density control

for further-away cells used in ViVo, not all Gaussians required for

view rendering may be downloaded. While this allows ViVo to use

less network bandwidth compared to SGSS, the visual quality of

ViVo suffers significantly. In contrast, benefiting from optimized

spatial-partitioning, SGSS will download all the streaming cuboids

which are visible in the viewport and decrease the wasted band-

width. Figure 9 shows an example comparison. In the highlight of

figures, due to the “fake occlusion” issue, required Gaussians in the

background are not completely downloaded.

5.6 SGSS vs. SGSS-w/o OSP vs. SGSS-w/o IS
To show how SGSS can benefit from optimized spatial partitioning

(OSP) and importance sorting (IS), we conduct experiments stream-

ing basic cuboids only (i.e., w/o OSP) and streaming solved cuboids

MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa Mufeng Zhu, Mingju Liu, Cunxi Yu, Cheng-Hsin Hsu, and Yao Liu

(a) View rendered with the ViVo
approach. PSNR = 17.48 dB

(b) View rendered with our SGSS
approach. PSNR = 22.21 dB

Figure 9: Side-by-side comparison: rendering result of garden
at the 22th second under 200 Mbit/s bandwidth.

(a) PSNR (dB)↑ comparison with SGSS-w/o OSP

(b) SSIM↑ comparison with SGSS-w/o OSP

Figure 10: Visual quality comparison: SGSS vs. SGSS-w/o OSP
under 200 Mbit/s and orbital shot traces.

(a) PSNR (dB)↑ comparison with SGSS-w/o IS

(b) SSIM↑ comparison with SGSS-w/o IS

Figure 11: Visual quality comparison: SGSS vs. SGSS-w/o IS
under 100 Mbit/s and orbital shot traces.

without sorting Gaussians inside (i.e.,w/o IS), both with their respec-
tive priority weights. The visual quality results are shown in Figures

10 and 11. For comparison with SGSS-w/o OSP, since basic cuboids
with low density can benefit more from higher bandwidth, we show

results under 200 Mbit/s bandwidth setting. Figure 10 shows that

SGSS with OSP can achieve a more rapid increase at the beginning.

Since OSP will merge some basic cuboids, more spatial cuboids

will be assigned high priority, which promotes rapid growth in

visual quality. Figure 11 shows that with importance sorting, SGSS
allows the visual quality to improve faster than SGSS-w/o IS. This is

Table 4: VMAF results for all scenes across all baseline ap-
proaches under 100 Mbit/s bandwidth and orbital shot traces.

Scene FD DWO IM ViVo
Ours-
{w/o IS}

Ours-
{w/o OSP} Ours

bicycle 27.46 84.14 88.19 53.29 91.47 92.08 94.33
bonsai 82.22 92.55 94.63 50.75 92.79 94.93 96.04

drjohnson 54.68 85.60 94.41 77.68 93.15 92.45 94.63
flowers 52.61 86.66 90.16 56.21 89.31 89.30 91.86
garden 24.58 80.86 86.87 60.16 87.58 83.63 89.82
kitchen 74.57 91.70 94.06 67.73 93.71 90.95 95.34
playroom 64.08 88.77 95.15 89.41 86.70 86.08 89.35

room 76.59 92.04 95.20 66.34 93.45 92.60 94.13

stump 39.61 90.13 77.79 75.09 90.91 90.85 91.84
train 83.91 92.72 94.62 79.74 94.78 93.83 96.43
treehill 47.60 81.72 91.76 72.18 86.52 91.77 92.54
truck 65.17 87.81 91.59 58.99 88.05 91.33 94.47

because Gaussians within a same streaming cuboid that contribute

more to the rendering results are streamed and displayed earlier.

We can also see that the visual qualities of the three methods are

nearly the same after 10 seconds. This is because the camera in the

orbital shot dataset moves slowly, causing the number of newly

visible cuboids and the total Gaussians to be downloaded to remain

similar, leading to almost the same visual quality.

5.7 Perceptual Video Quality
We report the perceptual visual quality results of all scenes under

100 Mbits/s bandwidth and orbital shot traces, using the VMAF

metric in Table 4. Since we do not have raw camera video footage of

these scenes, we use a video rendered using all Gaussians (i.e., with-

out streaming) in each scene as reference for computing the VMAF

scores. SGSS consistently achieves high VMAF scores compared

to baseline approaches. It performs the best in 10 out of 12 scenes,

demonstrating the effectiveness of SGSS. As discussed earlier, when
Gaussians with higher importance are concentrated in the initial

viewport, IM produces results similar to those of SGSS. Moreover,

since IM is a non-viewport-adaptive approach, it can achieve good

visual quality performance once the entire scene is fully down-

loaded, as no additional Gaussians need to be downloaded for the

later viewports. In contrast, SGSS may need to download new vis-

ible streaming cuboids. This has caused IM to perform slightly

better than SGSS in VMAF results in two scenes.

6 Conclusion
3D Gaussian Splatting has the potential to transform real-world 3D

scene representations. In this paper, we made a first effort to opti-

mize the streaming transmission of 3D Gaussians to improve initial

viewing quality while saving network bandwidth. We designed

SGSS for view-adaptive streaming of optimized spatial partitions of

the full 3DGS scene. Additionally, we implemented a pre-sorting

scheme to quickly enhance initial visual quality. Furthermore, we

developed an efficient streaming strategy that is compatible with

modern HTTP protocols. Experiment results show that our ap-

proach is effective in achieving savings in network transmission

without impacting the quality of views.

Acknowledgments
We appreciate constructive comments from anonymous referees.

This work is partially supported by NSF under grants CNS-2200042

and CNS-2200048.

SGSS: Streaming 6-DoF Navigation of Gaussian Splat Scenes MMSys ’25, March 31-April 4, 2025, Stellenbosch, South Africa

References
[1] Rafael Pagés, Konstantinos Amplianitis, David Monaghan, Jan Ondřej, and Aljosa

Smolić. Affordable content creation for free-viewpoint video and vr/ar applica-

tions. Journal of Visual Communication and Image Representation, 53:192–201,
2018.

[2] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese. Joint 2d-3d-semantic

data for indoor scene understanding. arXiv preprint arXiv:1702.01105, 2017.
[3] Branislav Jenco. Virtual lidar error models in point cloud compression. Master’s

thesis, 2022.

[4] Mufeng Zhu, Yuan-Chun Sun, Na Li, Jin Zhou, Songqing Chen, Cheng-Hsin Hsu,

and Yao Liu. Dynamic 6-dof volumetric video generation: Software toolkit and

dataset. In 2024 IEEE 26th International Workshop on Multimedia Signal Processing
(MMSP), pages 1–6. IEEE, 2024.

[5] Raphael Sulzer, Renaud Marlet, Bruno Vallet, and Loic Landrieu. A survey and

benchmark of automatic surface reconstruction from point clouds. arXiv preprint
arXiv:2301.13656, 2023.

[6] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi

Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields

for view synthesis. In ECCV, 2020.
[7] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.

3d gaussian splatting for real-time radiance field rendering. ACM Transactions
on Graphics, 42(4):1–14, 2023.

[8] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf:

Tensorial radiance fields. In European Conference on Computer Vision, pages
333–350. Springer, 2022.

[9] Sara Fridovich-Keil, GiacomoMeanti, Frederik RahbækWarburg, Benjamin Recht,

and Angjoo Kanazawa. K-planes: Explicit radiance fields in space, time, and

appearance. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12479–12488, 2023.

[10] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang

Wang. Lightgaussian: Unbounded 3d gaussian compression with 15x reduction

and 200+ fps. arXiv preprint arXiv:2311.17245, 2023.
[11] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter

Hedman. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5470–5479, 2022.

[12] Maximum Wilder-Smith, Vaishakh Patil, and Marco Hutter. Radiance fields for

robotic teleoperation, 2024.

[13] Github: antimatter15/splat. https://github.com/antimatter15/splat.

[14] gsplat — 3D Gaussian Splatting WebGL viewer . https://gsplat.tech/.

[15] Github: mkkellogg/GaussianSplats3D. https://github.com/mkkellogg/

GaussianSplats3D.

[16] Defining the Core Web Vitals metrics thresholds. https://web.dev/articles/

defining-core-web-vitals-thresholds.

[17] Vickie Ye and Angjoo Kanazawa. Mathematical supplement for the gsplat
library. arXiv preprint arXiv:2312.02121, 2023.

[18] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Ewa

splatting. IEEE Transactions on Visualization and Computer Graphics, 8(3):223–238,
2002.

[19] Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Budagavi, Pablo

Cesar, Philip A Chou, Robert A Cohen, Maja Krivokuća, Sébastien Lasserre, Zhu

Li, et al. Emerging mpeg standards for point cloud compression. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 9(1):133–148, 2018.

[20] D Graziosi, O Nakagami, S Kuma, A Zaghetto, T Suzuki, and A Tabatabai. An

overview of ongoing point cloud compression standardization activities: Video-

based (v-pcc) and geometry-based (g-pcc). APSIPA Transactions on Signal and
Information Processing, 9:e13, 2020.

[21] Draco 3D. https://google.github.io/draco/.

[22] Ricardo L De Queiroz and Philip A Chou. Compression of 3d point clouds using

a region-adaptive hierarchical transform. IEEE Transactions on Image Processing,
25(8):3947–3956, 2016.

[23] Yuan-Chun Sun, Yuang Shi, Wei Tsang Ooi, Chun-Ying Huang, and Cheng-Hsin

Hsu. Multi-frame bitrate allocation of dynamic 3d gaussian splatting streaming

over dynamic networks. In Proceedings of the 2024 SIGCOMM Workshop on
Emerging Multimedia Systems, pages 1–7, 2024.

[24] Joo Chan Lee, Daniel Rho, Xiangyu Sun, JongHwanKo, and Eunbyung Park. Com-

pact 3d gaussian representation for radiance field. arXiv preprint arXiv:2311.13681,
2023.

[25] Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. Compressed

3d gaussian splatting for accelerated novel view synthesis. arXiv preprint
arXiv:2401.02436, 2023.

[26] Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Müller, Morgan

McGuire, Alec Jacobson, and Sanja Fidler. Variable bitrate neural fields. In ACM
SIGGRAPH 2022 Conference Proceedings, pages 1–9, 2022.

[27] Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Liefeng Bo. Compressing

volumetric radiance fields to 1 mb. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4222–4231, 2023.

[28] Bo Han, Yu Liu, and Feng Qian. Vivo: Visibility-aware mobile volumetric video

streaming. In Proceedings of the 26th annual international conference on mobile
computing and networking, pages 1–13, 2020.

[29] Martin Thomson and Cory Benfield. HTTP/2. RFC 9113, June 2022.

[30] Mike Bishop. HTTP/3. RFC 9114, June 2022.

[31] Christer Ericson. Real-time collision detection. Crc Press, 2004.
[32] Johnny Huynh. Separating axis theorem for oriented bounding boxes. URL: jkh.

me/files/tutorials/Separating% 20Axis% 20Theorem% 20for% 20Oriented% 20Bound-
ing% 20Boxes. pdf, 2009.

[33] Kazuho Oku and Lucas Pardue. Extensible Prioritization Scheme for HTTP. RFC

9218, June 2022.

[34] Optimize resource loading with the Fetch Priority API . https://web.dev/articles/

fetch-priority.

[35] WebGL Shaders and GLSL . https://webglfundamentals.org/webgl/lessons/webgl-

shaders-and-glsl.html.

[36] H2O - an optimized HTTP server with support for HTTP/1.x, HTTP/2 and

HTTP/3. https://github.com/h2o/h2o/?tab=readme-ov-file/.

[37] Gurobi Optimization. https://www.gurobi.com/.

[38] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and

temples: Benchmarking large-scale scene reconstruction. ACM Transactions on
Graphics (ToG), 36(4):1–13, 2017.

[39] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis,

and Gabriel Brostow. Deep blending for free-viewpoint image-based rendering.

ACM Transactions on Graphics (ToG), 37(6):1–15, 2018.
[40] ZhouWang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality

assessment: from error visibility to structural similarity. IEEE transactions on
image processing, 13(4):600–612, 2004.

[41] VMAF: The Journey Continues. https://medium.com/netflix-techblog/vmafthe-

journey-continues-44b51ee9ed12.

[42] VMAF - Video Multi-Method Assessment Fusion. https://github.com/Netflix/

vmaf.

[43] tc(8) — Linux manual page . https://man7.org/linux/man-pages/man8/tc.8.html.

https://github.com/antimatter15/splat
https://gsplat.tech/
https://github.com/mkkellogg/GaussianSplats3D
https://github.com/mkkellogg/GaussianSplats3D
https://web.dev/articles/defining-core-web-vitals-thresholds
https://web.dev/articles/defining-core-web-vitals-thresholds
https://google.github.io/draco/
https://web.dev/articles/fetch-priority
https://web.dev/articles/fetch-priority
https://webglfundamentals.org/webgl/lessons/webgl-shaders-and-glsl.html
https://webglfundamentals.org/webgl/lessons/webgl-shaders-and-glsl.html
https://github.com/h2o/h2o/?tab=readme-ov-file/
https://www.gurobi.com/
https://medium.com/netflix-techblog/vmafthe-journey-continues-44b51ee9ed12
https://medium.com/netflix-techblog/vmafthe-journey-continues-44b51ee9ed12
https://github.com/Netflix/vmaf
https://github.com/Netflix/vmaf
https://man7.org/linux/man-pages/man8/tc.8.html

	Abstract
	1 Introduction
	2 Background and Related Works
	3 Design of SGSS
	3.1 Optimized Spatial Partitioning of the Scene
	3.2 Importance Sorting in Each Streaming Cuboid
	3.3 SGSS Streaming Algorithm

	4 Implementation
	5 Performance Evaluation
	5.1 Setup
	5.2 Pre-Sorting Criteria Results
	5.3 Spatial Partitioning Results
	5.4 SGSS vs. Non-Viewport-Adaptive
	5.5 SGSS vs. ViVo
	5.6 SGSS vs. SGSS-w/o OSP blackvs. SGSS-w/o IS
	5.7 Perceptual Video Quality

	6 Conclusion
	Acknowledgments
	References

