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ABSTRACT
Nowadays, volumetric video has emerged as an attractive mul-
timedia application, which provides highly immersive watching
experiences. However, streaming the volumetric video demands
prohibitively high bandwidth. Thus, effectively compressing its
underlying point cloud frames is essential to deploying the vol-
umetric videos. The existing compression techniques are either
3D-based or 2D-based, but they still have drawbacks when being
deployed in practice. The 2D-based methods compress the videos
in an effective but slow manner, while the 3D-based methods fea-
ture high coding speeds but low compression ratios. In this paper,
we propose patchVVC, a 3D-based compression framework that
reaches both a high compression ratio and a real-time decoding
speed. More importantly, patchVVC is designed based on point
cloud patches, which makes it friendly to an field of view adaptive
streaming system that further reduces the bandwidth demands.
The evaluation shows patchVCC achieves the real-time decoding
speed and the comparable compression ratios as the representative
2D-based scheme, V-PCC, in an FoV-adaptive streaming scenario.

CCS CONCEPTS
• Computing methodologies→ Image compression; • Com-
puter systems organization→Real-time system architecture;
• Information systems→Multimedia information systems.

KEYWORDS
Point Cloud Compression; Volumetric Video; Video Streaming

ACM Reference Format:
Ruopeng Chen, Mengbai Xiao, Dongxiao Yu, Guanghui Zhang, and Yao
Liu. 2023. patchVVC: A Real-time Compression Framework for Streaming
Volumetric Videos. In Proceedings of the 14th ACM Multimedia Systems

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0148-1/23/06. . . $15.00
https://doi.org/10.1145/3587819.3590983

frame n

frame n+1

frame n

frame n+1
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Figure 1: Two examples of compensating pixels/points in
2D/3D frames. The pixels in the 2D frames are inherently
aligned, and thus their color redundancy could be removed
easily. The points in the 3D frames are not aligned. We may
have different point numbers even for the same 3D object.

Conference (MMSys ’23), June 7–10, 2023, Vancouver, BC, Canada. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3587819.3590983

1 INTRODUCTION
The recent advances in virtual reality (VR) and augmented reality
(AR) technologies have triggered an emerging video type called
volumetric video. When watching the video, the user is allowed
to freely navigate, i.e., translating and rotating the viewport, in a
rendered scene. By providing such a highly immersive watching
experience, the volumetric video is expected to bring a new dimen-
sion to the industries like filmmaking1 and interactive advertising.2
The market for volumetric videos is reported to reach $4.9 billion
by 2026 in a recently published market research.3

However, storing and streaming volumetric video suffers from
its massive volume. A volumetric video is composed of temporally
continuous point clouds as its frames, which could be captured
by Lidars [39] and RGB-D cameras [33], or be reconstructed from
2-dimensional (2D) images [4]. A point cloud (PC) frame is a set
of unordered points, and each point is associated with its Carte-
sian coordinates ⟨𝑥,𝑦, 𝑧⟩, the color information, and other optional
attributes like curvature and normal. To reconstruct a realistic
and immersive enough scene for the viewer, a volumetric video

1https://www.youtube.com/watch?v=iwUkbi4_wWo
2https://www.anayi.com/include_html/4d/21ss_4d_11.html
3https://www.marketsandmarkets.com/Market-Reports/volumetric-video-market-
259585041.html
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must contain frames with millions of points and reach 30 frames-
per-second (FPS). Even if only the coordinates and the colors are
preserved, streaming the volumetric video still requires a network
bandwidth higher than the scale of Gbps, exceeding the available
wireless bandwidth that could be provisioned nowadays [5].

To effectively reduce the volumetric video size, one of the most
promising solutions is developing compression techniques for the
underlying point clouds. Researchers either exploit the 3-dimensional
(3D) data structures [11, 16, 18, 26], e.g., the octree or the kd-tree,
to directly compress the point cloud, or project the points onto 2D
planes followed by a traditional video codec [20, 28], like H.264 [37]
or HEVC [34]. The 3D-based methods generally build a compact
tree geometrically representing all points of a frame, and the po-
sitional residuals are compressed by an entropy encoder [6] or
are directly removed. Without searching and eliminating the inter-
frame redundancy, this thread of methods encodes and decodes the
PC frames at satisfying speeds but only has a low compression ratio.
In contrast, the 2D-based methods take advantage of the traditional
codecs that are designed based on inter- and intra-frame redun-
dancy elimination, thus compressing the PC frames more effectively.
But the transformation between the 3D space and the 2D space
substantially complicates the codec implementation, leading to a
slow encoding/decoding speed. Moreover, the 2D-based methods
are not friendly to a field-of-view (FoV) adaptive streaming system,
which is also a promising technique that reduces the bandwidth re-
quirement for delivering volumetric videos. To transmit the visible
content only, the projected points must be rearranged on the 2D
frames, and the video must be compressed again.

As 3D-based schemes are fast, the major challenge of improving
its compression ratio is effectively locating inter-frame redundancy.
It is not straightforward to migrate the motion compensation tech-
niques in conventional 2D codecs to the 3D space. Unlike the 2D
images, the points in the neighboring PC frames are not spatially
aligned, and their numbers are not even necessarily the same as
shown in Figure 1(b).

In this paper, we propose patchVVC, a patch-wise volumetric
video compression framework. patchVVC is a 3D-based compres-
sion method that features a high compression ratio and fast decod-
ing speed. More importantly, patchVVC encodes the volumetric
video based on spatially divided patches so that we can directly
figure out the visible data in compressed format, which is friendly
to an FoV-adaptive streaming system. Specifically, the video frames
are separated into groups of pictures (GOPs), which consist of a
leading I-frame and subsequent P-frames, and the compression is
carried out in each GOP individually. The encoding pipeline is com-
posed of three stages, the two-stage motion estimation, the patch
deformation, and the data compression.

In the two-stage motion estimation, the PC frames in a GOP
are separated into patch groups, and for each group we extract a
transformation matrix and combine it with the global trasfromation
matrix of the GOP to jointly represent the rigid moves of consec-
utive patches. In patch deformation, we align the points across
patches in a patch group by deforming them to a common patch, in
which the 𝑘-means algorithm is adopted to find the geometrically
aligned positions and they are colored by distance-weighted inter-
polation. We also exclude patches that are significantly deviated
from the common patch and compress them individually. With the
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Figure 2: A three-level octree indexes a point cloud without
keeping the residuals.

aligned points, one octree could represent the geometric structure
of the patch group and the color redundancy is removed trivially.
In data compression, the transformation matrices and the octrees
are compressed by an entropy encoder [6], while the colors and
the color residuals are encoded with the region-adaptive hierar-
chical transform method (RAHT) [7]. The procedures of encoding
and decoding patch groups in patchVVC are independent of each
other and thus are friendly to both the modern multi-threading
architecture and the FoV-adaptive streaming system. We evaluate
patchVVC with the 8i dataset [9]. The experimental results show
that patchVVC reduces the size of compressed data by up to 7.72x
compared to GROOT [18] and up to 5.73x compared to MP3DG [22].
patchVVC also approaches the representative 2D-based methods, V-
PCC [28], in terms of the compression ratio when compressing com-
plete videos, and even requires less bandwidth in an FoV-adaptive
streaming scenario. It is worth noting that patchVVC decodes the
volumetric videos at real-time speed, which is almost 20x faster
than V-PCC and MP3DG.

The main contributions of this paper are summarized as follows:
• We propose a 3D-based compression framework that exploits
the inter-frame redundancy in both the geometric and color
domain to achieve a high compression ratio for volumetric
videos.

• Our parallel-friendly method features a fast decoding speed,
supporting real-time streaming applications.

• Our patch-based approach is friendly to the FoV-adaptive
streaming scenarios, which can further reduce the bandwidth
consumption when delivering the video.

• We implement a prototype codec based on the proposed
framework, and the comparison results with the peer solu-
tions justify our designs.

The rest of this paper is organized as follows. We first summa-
rize the related work in Section 2, and then introduce background
knowledge in Section 3. The encoder and decoder are described in
Section 4 and Section 5, respectively. We report the experimental re-
sults in Section 6. The discussion is in Section 7 and the conclusion
of the work is in Section 8.

2 RELATEDWORK
2.1 Point Cloud Compression
The MPEG standard V-PCC [28] is a 2D-based scheme designed
to compress point cloud sequences, where points in the 3D space
are projected onto 2D frames. These frames are compressed with
traditional codecs. Based on V-PCC, a prior study [20] suggests
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deriving additional motion vectors from the 3D point clouds for
improving the encoding performance of the 2D codec. Or one can
recognize the unoccupied pixels on the projected plane and trade
their visual quality for a high compression ratio [19]. Considering
the narrow scope of the user’s FoV, view-PCC [42] introduces multi-
view projection and distance-based clustering methods into the V-
PCC pipeline so that adaptively streaming the volumetric video in a
bandwidth-aware manner becomes possible. Though the 2D-based
methods achieve high compression ratios, they suffer from slow
coding speeds because of the complex pipelines.

In the 3D-based compressionmethods, a point cloud is commonly
represented by a compact octree, and the tree is compressed by an
entropy encoder [16, 26]. GROOT [18] further develops a parallel
decoding tree that breaks the dependencies between the tree nodes
at the last three layers, which is suitable for GPU and meets the
real-time decoding speed. TheMPEG standard G-PCC [28] divides a
point cloud into blocks, where the encoding and decoding could be
performed in parallel. To further improve the coding efficiency of
dynamic point clouds, the 3D-based motion compensation [8, 21, 22,
38] that exploits the inter-frame redundancy is proposed. But these
methods are based on the blocks, not the patches, which can hardly
detect the motions across the block boundaries. On the other hand,
the point attributes, especially the colors, are usually projected
into a 2D image and use JPEG to compress it [18, 22]. RAHT is
designed to compress the colors by manipulating the octree built
on the points. RAHT features both high compression ratios and
fast coding speeds. Another thread of studies compresses the point
cloud sequence with graph-based transformation [14, 31, 41]. But
they suffer from high computation overhead.

2.2 Volumetric Video Streaming
As an emerging type of multimedia data, the methods of saving
the high bandwidth demands in streaming volumetric videos are
still being explored. DASH-PC [15] spatially sub-samples the dense
point clouds and constructs a point cloud-specific manifest. PCC
DASH [35] proposes to stream multi-object scenes with rate adapta-
tion heuristics that are based on the user and buffer status. Another
method [32] segments the PC frames into tiles to accommodate
the user-centric adaptation. These tiles must be independently cod-
able to allow adaptive streaming based on the user’s viewport.
Other tile-based methods [23] use the window buffer instead of
the queue buffer to handle frequent user interaction. The window
buffer method eliminates the sequential concept of queues and can
respond with latency to unexpected user interactions. The volumet-
ric video streaming could also be improved by predicting the user’s
FoV [12, 13], which substantially reduces the motion-to-photon
latency. To practically stream the volumetric video on mobile de-
vices, Nebula [24] offloads the video decoding to the edge server
that transcodes the 3D point clouds into 2D frames according to the
user viewport. YuZu [40] is another streaming system that saves
bandwidth with a point cloud upsampling model.

3 BACKGROUND
3.1 Iterative Closest Point Algorithm
The iterative closest point algorithm (ICP) [2] is widely used for
point cloud registration. ICP aims at optimally overlapping a source

point cloud over a target point cloud after a rigid transformation.
ICP iteratively invokes four steps to build the transformationmatrix:
1) the closest points searching, 2) the transformation computing, 3)
the registration application, and 4) the convergence judgment. In an
iteration, a rotation vector ®𝑞𝑟 = (𝑞0, 𝑞1, 𝑞2, 𝑞3)𝑇 represented by the
quaternion and a translation vector ®𝑞𝑡 = (𝑞4, 𝑞5, 𝑞6)𝑇 are found to
minimize point distances between the source and the target point
cloud. The transformation matrix of the iteration 𝑘 is then

𝑀𝑘
𝑟 =

(
𝑞20 + 𝑞21 − 𝑞22 − 𝑞23 2(𝑞1𝑞2 − 𝑞0𝑞3 ) 2(𝑞1𝑞3 + 𝑞0𝑞2 ) 𝑞4
2(𝑞1𝑞2 + 𝑞0𝑞3 ) 𝑞20 + 𝑞22 − 𝑞21 − 𝑞23 2(𝑞2𝑞3 − 𝑞0𝑞1 ) 𝑞5
2(𝑞1𝑞3 − 𝑞0𝑞2 ) 2(𝑞2𝑞3 + 𝑞0𝑞1 ) 𝑞20 + 𝑞23 − 𝑞21 − 𝑞22 𝑞6

)
. While the optimal transformation is approached in 𝐾 iterations,
the overall transformation matrix is𝑀𝑟 = 𝑀𝐾

𝑟 ·𝑀𝐾−1
𝑟 · . . . 𝑀1

𝑟 , and
the transformed point cloud is P′𝑠 = 𝑀𝑟 · P𝑠 , where P𝑠 is the source
point cloud.

3.2 Octree-based Point Cloud Compression
Octree [26] is a compact data structure that indexes points in a 3D
space. When building an octree, we recursively subdivide the space
into 8 subspaces until a pre-defined level is reached or there is no
point contained. The root node thus represents the whole space and
the leaf nodes may contain any number of points. The intermediate
nodes have at most eight children so they can be efficiently stored
in a byte, where 1 indicates the corresponding subspace containing
points and 0 means an empty subspace. We don’t have to store the
coordinates of the points anymore because the centers of the leaf
nodes approximately represent the points contained. Or we can
calculate the residuals of the point coordinates from their subspace
centers, which can be more effectively compressed by entropy
encoders. Such a tree structure is materialized into a byte stream
according to the breadth-first search.

Figure 2 shows how a point cloud is indexed by an octree, and
how the octree is represented by a byte stream. Recovering the
coordinates of a point is thus calculating the center of the encap-
sulating subspace through tree traversal. But traversing the octree
is hardly parallel-friendly, and a prior study [18] strives to adapt
the tree structure to the GPU architecture for fast decoding. If the
point residuals are kept, an additional step that adds the residuals
to their centers is required.

3.3 RAHT
RAHT [7] is the state-of-the-art codec for compressing attributes in
a static point cloud. RAHT is based on the Haar wavelet transform.
It divides the point cloud into several blocks and constructs an
octree on each block. Then, RAHT merges the tree nodes from
bottom to top, and the merge operations of each node are carried
out along the 𝑥-, 𝑦-, and 𝑧-axis. Taking the 𝑥-axis as an example,
the merge operation follows[

𝑔𝑙−1,𝑥,𝑦,𝑧
ℎ𝑙−1,𝑥,𝑦,𝑧

]
=

1
√
𝑤1 +𝑤2

[ √
𝑤1

√
𝑤2

−√𝑤2
√
𝑤1

] [
𝑔𝑙,2𝑥,𝑦,𝑧
𝑔𝑙,2𝑥+1,𝑦,𝑧

]
, where 𝑔𝑙,𝑥,𝑦,𝑧 is the attribute signal of an octree node at layer 𝑙
and position ⟨𝑥,𝑦, 𝑧⟩, and ℎ𝑙,𝑥,𝑦,𝑧 is the coefficient.𝑤1 and𝑤2 are
the point numbers of the octree nodes with 𝑔𝑙,2𝑥,𝑦,𝑧 and 𝑔𝑙,2𝑥+1,𝑦,𝑧 .
After all the merge operations, the root node signal 𝑔0,0,0,0 and
all coefficients ℎ𝑙,𝑥,𝑦,𝑧 are divided into sub-bands according to the
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Figure 3: The overview of patchVVC

weights. Finally, each sub-band is quantized and encoded by an
arithmetic codec.

The encoder is designed to receive consecutive PC frames of a
volumetric video as the input and to output a bitstream for effi-
ciently storing and streaming. The input PC frames are divided into
groups of pictures (GOPs). A GOP has a leading I-frame and the
following 𝑁 − 1 P-frames. The encoder compresses the video one
GOP by one GOP. When processing a GOP, the encoding pipeline
consists of three phases, namely two-stage motion estimation, patch
deformation, and data compression. The left side of Figure 3 shows
how the encoder works.

3.4 Two-Stage Motion Estimation
In the two-stage motion estimation, our goal is to discover the
rigid moves of patches in a GOP. After global motion estimation
and patch-wise motion estimation, the I-frame is separated into 𝐿
patches, and we jointly use two matrices to characterize how one
I-frame patch is transformed to match a P-frame. Based on this, we
extract patches from the P-frames and form 𝐿 patch groups.

4 ENCODER
4.0.1 Global Motion Estimation. In a volumetric video, the neigh-
boring PC frames are expected to be highly similar. The global
motion estimation helps extract a compact transformation matrix
𝑀𝑔 that describes the major difference between an I-frame and a
P-frame. We start by filling the encoding buffer with a GOP of 𝑁
frames, and always set up the first one as the I-frame and the others
as the P-frames. The global motion estimation is carried out for
each P-frame. We first align the centroids of the I-frame and the
P-frame, introducing a better initial status to the ICP process. The
centroid alignment results in a translation vector ®𝑞𝑔 . After ICP is
performed on the translated I-frame and the P-frame, a transfor-
mation matrix 𝑀′

𝑔 is calculated. The overall transformation ma-
trix𝑀𝑔 from the global motion estimation is calculated following
𝑀𝑔 = 𝑀

′
𝑔 + (®0, ®0, ®0, ®𝑞𝑔).

4.0.2 I-patches Generation. The global motion estimation calcu-
lates a unifying transformation between the PC frames, but the
actual movement of a point cloud object is more subtle. For example,
a walking person is moving forward but his hand might swing back.
Thus, the point moves should be captured at a finer granularity. To

P-frame I-frame
I-patches

…

Global  Motion 
Estimation

Transformed P-frame

𝑀𝐠

Clustering

Patch-wise 
Motion Estimation

𝑀𝐩

Figure 4: The pipeline of two-stage motion estimation

realize this, clustering algorithms could be employed to generate
patches from the I-frame, namely I-patches.

We employ a straightforward yet effective method to generate
I-patches. For a given I-frame, we equally divide it into two blocks
along the dimension with the maximum span. The blocks are re-
cursively split in the same manner until the number of points in a
sub-block is less than a threshold. The threshold is experimentally
determined according to the number of patches we want to gener-
ate for an I-frame. We then calculate the centroids of all blocks and
classify every point to its nearest centroid. In the end, we separate
an I-frame into compact and non-overlapped patches with almost
the same number of points. Our experiments show that this method
is effective in generating patches for a single 3D object with rigid
moves. Additional clustering methods, e.g, DBSCAN [10], could be
incorporated to generate I-patches in more complex scenarios.

4.0.3 Patch-wise Motion Estimation. By accepting an I-patch as the
source and a complete P-frame as the target, the encoder calls ICP
to locate where the patch might best cover. We also set up a local
centroid alignment process to provide a preferable initial state for
ICP: 1) We calculate the centroid of the I-patch; 2) We search the
nearest neighbors of the points of the I-patch in the target P-frame,
and calculate the centroid of these neighbors; 3) We calculate the
translation vector between the two centroids. In the end, combining
the translation vector of alignment and the transformationmatrix of
ICP, a patch-wise transformation matrix𝑀𝑝 is calculated between
an I-patch and a P-frame, indicating the subtle movement of a small
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group of neighboring points. Figure 4 illustrates the processing
pipeline of the patch-wise motion estimation.

4.0.4 Patch GroupGeneration. According to the patch-wisemotion
estimation, an I-patch properly overlaps a part of each P-frame. But
we still need to generate patches from the P-frames, namely P-
patches, which are associated with the I-patch to form a patch group.
While the patches in a patch group are expected to represent the
same part of a 3D object, we can extract the common geometric
structure based on them. Specifically, if we have 𝐿 I-patches, we
classify each point in the 𝑛-th P-frame into 𝐿 P-patches. The cluster
index 𝑙 ∈ [0, 𝐿) of a point 𝑝 from the 𝑛-th P-frame is calculated as

argmin
𝑙

𝑑 (𝑝, P𝑛
𝑙
)

, where P𝑛
𝑙
is the 𝑙-th transformed I-patch towards the 𝑛-th P-frame,

and
𝑑 (𝑝, P𝑛

𝑙
) = min

𝑝′∈P𝑛
𝑙

∥𝑝 − 𝑝′∥

. In this way, the 𝑛-th P-frame is split into 𝐿 P-patches and each
of them is associated with an I-patch. Every I-patch and its 𝑁 − 1
associated P-patches form a patch group, and we have 𝐿 patch
groups in a GOP.

4.1 Patch Deformation
In the patch deformation stage, we generate a common patch for
a patch group to align the points from different frames. After de-
forming a patch into its common patch, we color the points via a
distance-weighted interpolation method. In the end, each patch is
represented by an octree of the common patch and the colors (the
I-patch) or the color residuals (the P-patches). The deviate patches
have their octree and colors.

4.1.1 Common Patch Construction. Once we have a patch group,
we can attempt to summarize the common geometric structure
for them. Inherently, the patches, no matter the I-patch or the P-
patches, are expected to represent the same part of a 3D object and
thus share a common geometric structure. However, due to the
noisy nature of positional signals, the points of these patches are
not aligned in the 3D space. Despite that we can build an octree over
these points to generalize the geometric structure, we still have to
preserve distinguish details for each patch at the leaf nodes, which
incurs significant overhead (the number of leaf nodes is almost
8x more than the intermediate nodes in an octree). To summarize

I-patch P-patch#1 P-patch#2
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Figure 6: An example of color interpolation and compensa-
tion

the common geometric structure in a more cost-efficient way, we
propose to deform every patch into a common patch that is the
most geometrically similar to all patches involved.

The common patch is generated as follows: we merge all patches
of a patch group (the I-patch and the transformed P-patches) into
a dense point cloud and start to build an octree over them. In the
tree-building process, a branch stops growing if the current level
of a node contains exactly one point from any patch or if the tree
is deep enough. This ensures the lowest level of tree nodes has
information from all frames.

While all branches have stopped growing, we conduct the 𝑘-
means algorithm [17] in the leaf nodes individually, where 𝑘 is the
number of points in a leaf node divided by the size of the patch
group. The process of generating the common patch for a patch
group is shown in Figure 5. After the 𝑘-means algorithm, all of
the clustering centroids form the common patch, and its geometric
structure is close to all patches in the patch group. It is worth noting
that we still need to build another octree based on the common
patch for the later compression.

Occasionally, a P-patch in the patch group has changed shape
from the I-patch, e.g., the fabric of a clothes flies in the wind. If we
involve such a deviate patch in the common patch construction, the
quality of the result is likely to have deteriorated. So we detect a
deviate patch in a patch group according to the MSE of its distance
from the I-patch. For the 𝑛-th P-patch P𝑛 , we calculate the distance
MSE as

MSE(P𝑛) =𝑚𝑎𝑥 (𝑓 (P𝑛, P0), 𝑓 (P0, P𝑛))
, where P0 is the I-patch in the same patch group, and

𝑓 (P,Q) =
∑︁
𝑝∈P

min
𝑞∈Q

∥𝑝 − 𝑞∥

defines an asymmetric distance from a patch P to another patch Q.
Only if MSE(P𝑛) is greater than a predefined threshold, the 𝑛-th
P-patch is a deviate patch and is excluded from the common patch
construction. These deviate patches are encoded independently as
the I-patches.

4.1.2 Color Interpolation and Compensation. Though the common
patch represents the unifying geometric structure of a patch group,
the color information of each patchmight be different because of the
changing lighting conditions. Therefore, we introduce a distance-
weighted interpolation method to color the common patch for 𝑁
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times. Specifically, the color of a point in the 𝑛-th colored common
patch 𝑐𝑐𝑛 is interpolated by its k-nearest neighbors in the same
patch

𝑐𝑐𝑛 =

𝑘∑︁
𝑗=1

𝑐𝑛
𝑗
·𝑤 𝑗
𝑤

, where 𝑐𝑛
𝑗
is the color of the 𝑗-th nearest points in the 𝑛-th patch

and𝑤 𝑗 is the reciprocal of distance from this neighbor to the point
we want to interpolate. As𝑤 𝑗 weighs the color of the 𝑗-th nearest
neighbor,𝑤 is the sum of all 𝑘 weights. Figure 6 shows an example
of interpolating the colors for different patches, where we use the
same method to handle all color channels.

As long as we deform the members of a patch group into a com-
mon patch with different colors, we can straightforwardly compen-
sate the colors of P-patches since their points are spatially aligned
with the ones in the I-patch. We directly subtract the point colors of
a P-patch from those of the I-patch and keep the color residuals with
little energy for compression later. An example of color compensa-
tion is shown in Figure 6. The color information of the P-patches
is reduced to quite small values, which can be more effectively
compressed compared to the original color signals.

4.2 Data Compression
Until now, the PC frames in a GOP have been converted into trans-
formation matrices (via the two-stage motion estimation), octrees
(representing the common patches of patch groups and the devi-
ate patches), colors (for the I-patches and the deviate patches), and
color residuals (for the P-patches). Figure 7 shows howwe compress
and organize the video data into a bitstream. To further reduce the
data volume, the colors and the color residuals are compressed with
the RAHT [7] method, while the transformation matrices and the
octrees are compressed with entropy coding. In the compressed
bitstream, we always have a header of encoding parameters, e.g.,
the GOP size, the number of patches in a frame, etc. After this,
the octrees representing the common patches are attached. Then,
the compressed data of the I-frame are added followed by those
of P-frames in the frame order. For each I-patch, we need to spec-
ify the patch group index and the RAHT quantization step in the
I-patch header before the compressed colors. The compressed col-
ors/color residuals of a P-patch follow a similar header except for
an additional field indicating if it is a deviate patch. We also include

the transformation matrices for each P-patch in addition to the
compressed color information.

5 DECODER
When the decoder receives the bitstream, we follow three phases
to decode the PC frames in a GOP: 1) decoding the common patch,
2) decoding the I-frame, and 3) decoding the P-frames. The right
side of Figure 3 shows how the decoder works.

5.1 Common Patch Decoding
According to the GOP header, the decoder understands the GOP
size 𝑁 and the number of patch groups 𝐿. With the parameters, the
decoder reads 𝐿 compressed octrees and feeds them to the specified
entropy decoder. With these octrees, we are able to recover all
points in the common patches by calculating the coordinates of the
leaf nodes. The coordinate residuals are added back if the encoder
chooses to preserve them. It is worth noting that since the common
patches are discovered independently, it is trivial to decode the
octrees and recover the coordinates in parallel.

5.2 I-frame Decoding
The decoder recovers the I-frame by associating the colors with
the common patches. According to the patch index in an I-patch
header, the compressed colors are paired with the corresponding
common patch. After decoding the colors with the color decoder,
the common patch could be straightforwardly colored because the
colors are organized in the order of extracting the points from the
octree. All the recovered I-patches then form the I-frame to be
rendered. Furthermore, as there is no data dependence between the
I-patches, they could be also recovered in parallel. After decoding
and rendering the I-frame, it should reside in the decoding buffer
for the following decoding of P-frames.

5.3 P-frame Decoding
Decoding a P-frame demands recovering all P-patches belonging to
it. Recovering a P-patch is similar to recovering an I-patch except
that two additional steps must be involved: 1) We should use the
transformed common patch as the skeleton instead, and 2) the
colors are recovered by adding the decoded color residuals to the
colors of the corresponding I-patch. For those deviate patches, they
are decoded with their own octrees, and the remaining steps are the
same as the I-patches. The P-frames are decoded frame by frame,
and when decoding a P-frame, we launchmultiple threads to decode
the P-patches.

6 EVALUATION
Implementation: We implement our system with roughly 3000
lines of C++ code. We incorporate the ICP algorithm and the nearest
neighbor search algorithm from PCL.4 The state-of-the-art entropy
encoder, Zstandard,5 is employed to compress the octrees and the
transformation matrices, and RAHT [7] is integrated to encode
the colors and the color residuals. patchVVC always launches 30
threads for decoding because we experimentally notice that more
threads contribute little to the decoding speed.
4https://github.com/PointCloudLibrary
5https://github.com/facebook/zstd

https://github.com/PointCloudLibrary
https://github.com/facebook/zstd
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Table 1: A brief introduction to the 8i dataset

Video Name Description Avg. # of
Points/Frame

Required
Bandwidth

Loot A man playing piano 794 K 2.86 Gbps
Longdress A female in a colorful dress 834 K 3.00 Gbps
Soldier A man on guard with a gun 1.01 M 3.87 Gbps

Redandblack A lady in a red and black skirt 707 K 2.63 Gbps

Experimental Setup: All of our experiments are carried out on a
machine having two 2.90GHz Intel Xeon CPUs and 128GB mem-
ory. We compare patchVVC with three peer methods, GROOT [18],
V-PCC [28], MP3DG [22]. GROOT is a GPU-accelerating 3D-based
compression method, which uses PD-tree, an octree optimized
for massive parallelism, to compress the geometric structure and
JPEG to compress the colors. In the experiments, we implement
our own version of GROOT following the published work [18] on
one NVIDIA Geforce RTX 3090 GPU. V-PCC is the most widely
recognized 2D-based compression solution for volumetric video. It
reaches a higher compression ratio than the 3D-based methods but
takes more time to encode/decode the data. We use the reference
implementation of V-PCC that is publicly available.6 MP3DG [21]
is a point cloud codec designed for 3D immersive videos. MP3DG
also exploits inter-frame redundancy and supports multi-threading
encoding/decoding. Different from patchVVC we capture the re-
dundancy between patches, and MP3DG carries out the motion
estimation between blocks from adjacent frames. In the evalua-
tion, we use the official implementation of MP3DG that is publicly
available.7

All the experiments are performed on the 8i dataset [9], which
consists of four 10-sec 30FPS volumetric videos. A brief introduction
to the 8i dataset is given in Table 1. The point cloud frames are
presented as text-based .ply files, where a line means a point and
consists of 3 coordinates and 3 channels of its RGB color. In the
experiments, the coordinates are turned into 32-bit integers, and
6https://github.com/MPEGGroup/mpeg-pcc-tmc2
7https://github.com/cwi-dis/cwi-pcl-codec
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Figure 9: The visual quality of different videos when varying
the GOP size

the RGB-formatted colors are converted to YUV colors according
to the ITU-R standard [25]. For all 3D-based methods, we set the
octree resolution at 1, and discard the residuals because it barely
affects the visual quality. The metrics PSNR.GEO and PSNR.Y [27]
are defined to represent the visual quality of PC frames. We also
measure how much compressed data have to be transmitted in
an FoV-adaptive streaming system if different coding schemes are
used. The experiments are conducted based on a viewport trace [32]
that is recorded from 26 participants watching the videos of the 8i
dataset.

6.1 GOP Size
In patchVVC, only the color residuals are compressed for the P-
patches. As a result, the compressed size of a P-patch is significantly
smaller than that of an I-patch or a deviate patch. Intuitively, we
want to define a large GOP size to maximize the compression ratio.
However, as GOP size grows, it is increasingly challenging to find
a P-patch in the last frame matching the I-patch, and we have to
definemore andmore deviate patches in a patch group. This reduces
the compression efficiency since the deviate patches are encoded
without any compensation. As a result, the GOP size is critical to
determine the compression ratio in patchVCC.

We thus conduct experiments to explore how the GOP size affects
the compression efficiency of patchVVC. In the experiments, we
change the GOP size from 3 to 30 and encode all videos in the 8i
dataset. The bitrate of the compressed data and the visual quality
are measured. In Figure 8, we report the normalized bitrates of
various videos as the y-axis and the x-axis is the GOP size. We
divide the average bitrate of a compressed video by its maximum
compressed bitrate to calculate the normalized bitrate. In the figure,
we can see an optimal GOP size for each test video that leads to the
smallest compressed data. Setting the GOP size to the optimal value
reduces the normalized bitrate by up to 47% (Soldier, GOP size 15).
The optimal GOP sizes for Longdress, Redandblack, and Loot are 5,
5, and 15, respectively.

We also measure PSNR.GEO and PSNR.Y to check if the varying
GOP size would affect the visual quality. The results are reported in
Figure 9, where the y-axes are PSNR.Y and PSNR.GEO in dB. We can
see that, for all videos, the visual quality is not significantly affected
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Figure 10: The RD-curves (geometric fidelity) of various codecs on the 8i dataset
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Figure 11: The RD-curves (color fidelity) of various codecs on the 8i dataset

by the GOP size. PSNR.GEO is degraded by up to 3.124 (Loot) and
PSNR.Y is degraded by up to 1.121 (Soldier) when increasing the
GOP size to 30.

6.2 RD-Curve
To more comprehensively evaluate patchVVC as a volumetric video
encoder, we plot the RD-curves of patchVVC, V-PCC, MP3DG,
and GROOT. As the visual quality of volumetric videos could be
measured in PSNR.GEO and PSNR.Y, we plot two versions of the
RD-curves to characterize both the geometric and color fidelity of
various encoders. When measuring PSNR.GEO, we change the MSE
threshold 𝑇 that controls how to detect the deviate patches from 5
to 20. When measuring PSNR.Y, we change the quantization step
𝑄 from 10 (30) to 50 to compress colors (color residuals), which
is used to balance the compression ratio and the color fidelity in
RAHT. When we scale one of 𝑇 and 𝑄 , another is set to a fixed
value. 𝑇 is set to 10 and 𝑄 is set to 10 (30). For V-PCC, we measure
four preset compression profiles ctc-r1, ctc-r3, ctc-r4, and ctc-r5 (ctc-
r2 is discarded because it outputs almost the identical results as
ctc-r1). For GROOT, we only plot its RD-curves on PSNR.Y because
it compresses the geometric structures of PC frames in a lossless
manner. We adjust the JPEG encoding quality from 10 to 70 in
GROOT. For MP3DG, we vary the size of predictive macroblocks
among 8, 16, 32, and 64.

The experimental results are reported in Figure 10 and Figure 11,
respectively, where the x-axes are the compressed bitrate in Mbps
and the y-axes are PSNR.GEO and PSNR.Y in dB. We individually

plot the RD-curves of various encoders for all videos. As a 3D-based
method, we can see that patchVVC is not as efficient as V-PCC in
terms of the compression ratio, because V-PCC takes advantage of
the techniques in the conventional 2D codecs that have been de-
veloped and optimized for decades. But since we effectively exploit
the inter-frame redundancy in terms of the geometric structure
and the colors, the compression ratio of patchVVC approaches V-
PCC in cases. When compressing Soldier with varying quantization
steps, the average bitrate of the compressed data of patchVVC is
17.90 Mbps while that of V-PCC is 25.51 Mbps, which is only 1.43x
higher. As for GROOT, patchVVC reduces the average bitrate of the
compressed data by 5.47x (Loot), 7.72x (Soldier), 1.95x (Longdress),
and 2.36x (Redandblack). Compared to MP3DG, patchVVC reduces
the average bitrate of the compressed data by 3.89x (Loot), 5.73x
(Soldier), 1.99x (Longdress), and 1.68x (Redandblack). The relatively
low compression ratios of the last two videos are due to the content.
We notice that the non-rigid transformation is more common and
the color variance is higher in the videos. In terms of visual quality,
patchVVC reaches slightly lower geometric and color PSNR than
V-PCC in most videos. In Redandblack, the average color PSNR is
as low as 25.39. The reason is that the sharp color variance in this
video is not friendly to our color interpolation method.

6.3 Decoding Latency
We aim at developing an efficient framework that matches the
video decoding to a practical speed, e.g., 30 FPS. Thus, the decoding
latency of patchVVC is also measured. We compare patchVVC,



patchVVC: A Real-time Compression Framework for Streaming Volumetric Videos MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

Loot Soldier Longdress Redandblack
1

5

25

125

625

D
ec

od
in

g 
L

at
en

cy
 (m

s) patchVVC GROOT V-PCC MP3DG
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codecs

GROOT, V-PCC, andMP3DG, and the results are shown in Figure 12.
We can observe that patchVVC has a similar decoding speed as
GROOT, even though GROOT is accelerated by GPU. On average,
patchVVC decodes a frame from 21.66 ms to 27.10 ms, and GROOT
takes 20.84 ms to 29.49 ms. In contrast, V-PCC takes up to 413.81
ms to decode a frame because of its complex processing pipeline,
which can hardly satisfy the requirement of fluent playback.We also
measure the decoding speed of MP3DG. Even though 30 threads
are launched for decoding, MP3DG still takes up to 394.05 ms to
decode a frame.

6.4 PatchVVC in FoV-Adaptive Streaming
One of the strengths of patchVVC is that an FoV-adaptive stream-
ing system could trivially select the patches in the user’s FoV. In
contrast, V-PCC can hardly support this because the video content
is projected onto a few 2D frames. It is not straightforward to cut
the compressed 2D frames according to the varying FoV. In this
experiment, we evaluate the compressed data required to be trans-
mitted in an FoV-adaptive streaming system for different coding
schemes. For patchVVC, we set𝑇 as 10 and𝑄 as 10 for I-frames and
30 for P-frames. V-PCC is set to use the ctc-r5 compression profile.

We simulate an FoV-adaptive streaming system based on a pub-
lic trace [32]. Before the experiment, we convert the trace data
recorded in the Unity global coordinate system to those in the vox-
elized coordinate system. Because the 8i dataset uniformly maps
1.8 meters to [0, 1024) in integers, the new camera position 𝐶𝑥/𝑦/𝑧𝑣

is calculated by

𝐶
𝑥/𝑦/𝑧
𝑣 =

𝐶
𝑥/𝑦/𝑧
𝑢

1.8
× 1024

, where 𝐶𝑥/𝑦/𝑧𝑢 is the Unity global coordinate. We set the FoV to
100◦×100◦.

In the experiment, we check if any point of a patch falls in the
FoV. If so, the patch has to be transmitted, otherwise, the patch is
excluded from the network delivery. In addition, we also exclude
the occluded patches even if they are in the FoV. We determine a
patch as occluded if all its points are occluded by at least one point
from another patch. We name the scheme using FoV to exclude
the invisible patches as patchVVC-FoV and the original scheme
as patchVVC-vanilla. For V-PCC, all data have to be sent via the
network. For GROOT, we also evaluate if it can benefit from the
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Figure 13: The bitrates of streaming an object with FoV-
adaptive methods
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FoV-adaptive system. In GROOT, we first remove all points outside
the FoV and then use the encoder to compress the trimmed point
clouds. MP3DG is not optimized for FoV-adaptive streaming, so we
will not discuss it here.

6.4.1 Single Object. We first conduct the experiment based on the
original videos from the 8i dataset that contains only one object.
We calculate how much data should be transmitted over the net-
work and report the results in Figure 13, where the y-axis is the
required bandwidth in Mbps and the x-axis is the video names.
From the figure, we can see GROOT can hardly benefit from the
FoV-adaptive calculation. It always has the highest bitrate even
though we have removed points outside the FoV. For patchVVC,
trimming the invisible data can always reduce the bandwidth re-
quired for streaming, and the average bandwidth saving is 17.19
Mbps. For V-PCC, though it has to send all of its data, the bandwidth
required is still low due to its high compression efficiency. Overall,
patchVVC-FoV further approaches the bandwidth requirement of
V-PCC, and even in the case of streaming Soldier, patchVVC-FoV
demands 58.96% less bandwidth compared to V-PCC.

6.4.2 Multi-Objects Scene. We also evaluate the coding schemes
in multi-objects scenes. We generate two scenes with the 8i videos,
one with Loot and Soldier in it, while another with Longdress and
Redandblack. To form a multi-objects scene, we translate one ob-
ject and combine it with the other object. Specifically, we translate
Soldier and Redandblack by [600, 0, 0]𝑇 , and combine them with
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Loot and Longdress, respectively. We apply the trace of each object
in the scene independently to the entire scene, and then report
the average performance. For patchVVC, we additionally incorpo-
rate DBSCAN [10] to better split the patches in the I-frames. The
evaluation results are shown in Figure 14. Similar trends are ob-
served in single object compression, where GROOT has the worst
performance. patchVVC-FoV demands 41.70% less bandwidth than
V-PCC in Loot & Soldier while demands 34.23% more bandwidth in
Longdress & Redandblack.

7 DISCUSSION
The volumetric video is composed of consecutive and highly similar
frames, just like the 2D conventional videos. This emerging video
type is also data-intensive and needs compression techniques. It
is a natural idea to apply the compression techniques developed
for 2D videos to the volumetric video, which have been deployed
for decades [34, 37] and are still evolving [3]. Since pixels of volu-
metric videos are presented in a 3D space, one effective solution
is compressing the pixels only after projecting them onto a planar,
forming 2D patches embedded in rectangular frames. This solu-
tion has been standardized [28]. But treating the 3D objects as 2D
patches discards one-dimensional information, and the movement
of objects in the 3D space can not be completely captured during
the compression process. We believe that directly realizing motion
estimation and compensation in the 3D space is another potential
solution to compressing volumetric videos since these techniques
are originally developed for capturing object movements in the 3D
space (though these movements are projected into the 2D space).
In this work, we explore if we can build a pipeline to compress
the volumetric videos as what has been done in compressing the
conventional 2D videos. Despite the high-level idea being similar,
challenges still exist in the implementation: 1) What is the basic
unit of motion estimation? 2) How can we carry out the motion
compensation? And 3) how is the compression pipeline evaluated?

7.1 Blocks vs. Patches
The motion estimation in 2D video codecs is based on macroblocks,
which are small squares or rectangles. To mimic this, the point
cloud frames could also be split into non-overlapped cubes [8, 22].
However, there are a few weaknesses in doing this: 1) The searching
space of motion vectors is one dimension higher than that of 2D
videos; 2) the volumetric video is relatively sparse, which means a
cube with most empty voxels may match another empty cube even
if the non-empty voxels from two cubes are completely different;
3) A cube might contain voxels from different objects, which have
different motion vectors.

The current hardware captures point clouds from the surfaces
of objects so that they form thin "shells" in the frames. We expect
the 3D patches extracted from the object surfaces can be used as
the basic unit of motion estimation. A patch is dense and, more
importantly, is extracted from the neighboring area of the same
object surface, which is highly likely composed of voxels with
similar motion vectors. In this work, we employ a straightforward
method to generate patches at a similar size from a single object.
But advanced techniques are worth exploring to achieve better
segmentation results.

7.2 Motion Estimation and Compensation
For a point cloud patch, ICP [2] is a feasible method to estimate
the motion vector across frames. Though more accurate methods,
e.g., NICP [30] and GICP [29], have been proposed, they also de-
mand high computation overhead. DNN-based methods [1, 36]
further improve the accuracy of motion estimation but only in
a low-throughput way. We aim at developing a codec matching
the real-time playback speed in this work, thus adopting ICP. But
these alternative methods could be further explored if a coding
framework with a high compression ratio is desired.

The motion compensation between 3D patches is also challeng-
ing, especially the number of points is not identical and their po-
sitions are not aligned. In patchVVC, we suggest constructing a
common patch to reach alignment among a group of patches. This
reduces redundancy in both the geometric domain and the color
domain. But this method is short of flexibility. In future work, we
prefer developing a method that could more flexibly make a trade-
off between visual quality and compression ratio.

7.3 Quality Metrics
Weadopt PSNR.Y and PSNR.GEO as the qualitymetrics in patchVVC,
which are also the MPEG standard [27]. However, these metrics are
extended from the ones used in 2D images, and can not completely
adapt to 3D objects. For example, it is meaningless to evaluate the
quality of the occluded part of the point cloud in practice. Addi-
tionally, the size of points when rendering also affects the visual
quality of a point cloud but this is not captured by the current
metrics. Thus, a quality metric that more accurately characterizes
the user’s quality of experience is critical in building a satisfactory
compression pipeline. With such a metric, it becomes easy to un-
derstand if a compression technique could impair the user’s quality
of experience.

8 CONCLUSION
In this paper, we propose patchVVC, a real-time 3D-based com-
pression framework for volumetric videos. patchVVC reaches a
high compression ratio by effectively exploiting the inter-frame
redundancy in both the geometric and color domains. Moreover,
patchVVC is designed based on splitting the point cloud frames
into patches and is friendly to both the modern multi-threading
architecture and the FoV-adaptive streaming systems. This leads to
the real-time decoding speed and low bandwidth demands of de-
ploying patchVVC. The evaluation shows that patchVVC achieves
comparable compression ratios to V-PCC and similar decoding
speeds to GROOT. Also, patchVVC outperforms MP3DG on both
compression ratios and decoding speeds.
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