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ABSTRACT
3D video surveillance has become the new trend in security moni-
toring with the popularity of 3D depth cameras in the consumer
market. While enabling more fruitful surveillance features, the
finer-grained 3D videos being captured would raise new security
concerns that have not been addressed by existing research. This
paper explores the security implications of live 3D surveillance
videos in triggering biometrics-related attacks, such as face ID
spoofing. We demonstrate that the state-of-the-art face authentica-
tion systems can be effectively compromised by the 3D face models
presented in the surveillance video. Then, to defend against such
face spoofing attacks, we propose to proactively and benignly in-
ject adversarial perturbations to the surveillance video in real time,
prior to the exposure to potential adversaries. Such dynamically
generated perturbations can prevent the face models from being
exploited to bypass deep learning-based face authentications while
maintaining the required quality and functionality of the 3D video
surveillance. We evaluate the proposed perturbation generation
approach on both an RGB-D dataset and a 3D video dataset, which
justifies its effective security protection, low quality degradation,
and real-time performance.

CCS CONCEPTS
• Information systems→Multimedia information systems; •
Security and privacy→ Systems security.
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1 INTRODUCTION
With the introduction of 3D depth cameras in the consumer mar-
ket [11, 13, 15], 3D video surveillance has emerged as a new and
advanced means of finer-grained monitoring for the physical world
events than the traditional 2D video surveillance [14]. In particular,
the addition of depth information in the camera view provides the
opportunities of applying video surveillance in many traditional
and new fields of businesses, such as security surveillance [16],
logistics [5], transportation [7], and retail [19]. For example, in se-
curity surveillance, 3D cameras can better differentiate suspicious
subjects in the surroundings from normal ones by leveraging the
depth information [16]. In retail business, 3D cameras can accu-
rately count the number of people in multiple zones, monitor the
dwell time, and form heat-maps to help store managers with deci-
sion making [19]. With its growing popularity and strong potential,
3D video surveillance has become one of the major application
domains boosting the demand of 3D cameras, which was valued at
USD 1.92 billion in 2018 and projected to expand at a compound
annual growth rate of 35.8% from 2019 to 2025 [11].

However, the other side of the coin for the 3D video surveillance
involves significant challenges in multiple dimensions, such as the
bandwidth and performance for delivering the 3D content [52],
as well as the security and privacy concerns around the content
of 3D videos [63]. To date, the community has mainly focused on
the bandwidth and performance challenges with many effective
content delivery and rendering solutions [28, 52, 66]. However,
the security and privacy aspect of 3D surveillance has not been
maturely studied, which leaves a gap between the readiness of
the 3D surveillance equipment/technology and the immaturity in
utilizing it in practice due to the ever increasing security/privacy
concerns in video surveillance [8, 32, 74].

Although the community has developed security techniques to
protect the traditional 2D surveillance videos [77], the extra depth
information in the 3D surveillance video poses unique security chal-
lenges that did not exist in the 2D counterpart. For example, human
face is probably the most security sensitive object in a surveillance
video that must be protected. Recent multimedia security research
has shown that, given the face images extracted from video frames,
the adversaries may conduct face ID spoofing attack to get rec-
ognized as the victim user in front of a deep learning-based face
authentication system [26, 41, 72]. Then, to defend against such
spoofing attack, the state-of-the-art face authentication systems
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have evolved to require depth information [25, 45, 46, 78] and live-
ness detection [10, 40, 69] to differentiate a real human face from
the one extracted from a video. Although these defense methods
can successfully mitigate the security concerns in 2D videos, the
3D surveillance video presents both depth and liveness, leading to
successful face ID spoofing attacks.

To address the security issues involved in 3D video surveillance,
we propose to inject perturbations to the sensitive 3D objects (e.g.,
human faces) in the surveillance video to prevent potential threats
(e.g., face spoofing attack). In a nutshell, from the security per-
spective, the injected perturbations are expected to fail the face
authentication attempts by misleading the authentication work-
flow or algorithm to generate erroneous results; therefore, there
would be no security impact posed to the victim user whose facial
information may have been intercepted by the adversary during
the transmission and display of the surveillance video. On the other
hand, while generating the perturbations, we must maintain the
original functionality and performance of the 3D video surveillance,
leading to the following requirements: (1) Quality requirement:
The injected perturbation should not blur the video to the extent
that compromises the original purpose of the video surveillance.
For example, in the case of 3D security surveillance cameras [16],
the subjects in the RGB frames should still be sufficiently visible
to a human inspector for the purpose of surveillance and forensics.
Also, the depth channel of the surveillance video should not be
significantly altered for the purpose of identifying the distances of
the subjects. (2) Real-time performance requirement: The per-
turbation generation should not incur significant delay to impact
the real-time processing and live delivery of the surveillance video.

Taking the security goal and the quality/performance require-
ments into consideration, we develop a real-time perturbation gen-
erationmechanism for live 3D surveillance video, namely LiVSec. To
accomplish the security goal while minimizing the quality impact,
LiVSec makes a benign and novel use of adversarial attack for deep
neural networks (DNNs) [24, 35, 43], which is originally a malicious
attack method but being adopted as a benign protection scheme for
3D surveillance videos in this work. Under this context, the benign
perturbation generated by LiVSec would fail the target DNN (i.e.,
the malicious face authentication/spoofing attempt) but maintain
the original visual quality of the original object. More importantly,
to meet the performance requirement, LiVSec develops a real-time
adversarial perturbation generator for 3D face models to perform
fast perturbation generation (at the magnitude of milliseconds per
frame), which overcomes the limitations of slow generation (at
the magnitude of seconds per frame) in the classical adversarial
attacks [24, 35, 43]. We implement the proposed LiVSec approach
in a live 3D video streaming system and evaluate its security, qual-
ity, and performance using two representative datasets including
RGB-D images and 3D video. The evaluation results demonstrate
the effectiveness of LiVSec in protecting live 3D video surveillance.

2 BACKGROUND
2.1 Live 3D Video Surveillance
The live 3D video surveillance system adopts 3D cameras and fast
network communications to deliver the immersive view of the tar-
gets under surveillance. It has become feasible with the popularity

Figure 1: Overview of 3D video surveillance system.

of 3D cameras in the consumer market, and the industry foresees
a fast growing market trend incorporating 3D video surveillance
as one of the major use cases of 3D cameras [11]. Without loss of
generality, we consider an end-to-end surveillance video system as
demonstrated in Figure 1. The system involves three major compo-
nents that jointly achieve the goal of live 3D surveillance: (1) the
video source, which is a public security camera that captures the
live video with both the RGB and depth information, potentially
including the faces of various people who are concerned about
security; (2) the network, which delivers the live surveillance video
from the source to the monitor in a timely manner; and (3) the mon-
itor, which receives and displays the live 3D video at the receiver
end for the purpose of surveillance or further analysis.

The purpose of the 3D video surveillance system is to capture
the suspicious behavior (e.g., moving subjects) accurately and in a
timely manner. To achieve this goal, the state-of-the-art 3D security
cameras [16] typically involve a 2-step workflow: (1) The captured
3D video is processed by a computer vision or machine learning
model to automatically detect the target behavior (e.g., motion). This
step does not have human involvement, and the depth information
in the video plays an important role in achieving more accurate
detections [16]. (2) If suspicious behavior is detected in step (1), the
surveillance system would send an alert followed by streaming the
surveillance video to the remote user. The user can then visually
inspect the video and verify the suspicious behavior or infer more
details that were not reported by the system automatically. In this
step, the user only inspects the RGB portions of the frames without
depth information.

In a 3D video surveillance system, there are two important prop-
erties that must be preserved to achieve fruitful surveillance. First,
the processing of the source video must be real-time for the mon-
itor to capture the dynamic situations at the source. Second, the
quality of the video perceived at the monitor must be sufficient for
user inspections, which is not as stringent as the general quality of
experience requirement in entertainment videos [20], but the noise
or perturbation involved should not mislead the visual perception
of critical objects in the video. Our design of the LiVSec approach
achieves these two important properties by injecting perturbations
to the video frames in real time, which leads to the malfunction
of face spoofing attack without significantly impacting the visual
quality of user inspection (i.e., step (2) in the aforementioned 3D
surveillance workflow). Meanwhile, since the injected perturbations
would not alter the object motion or significantly change the depth
to confuse with other types of objects, LiVSec is not expected to
affect the functionality of motion and depth-based 3D monitoring
(i.e., step (1) in the workflow).
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2.2 Face Authentication and Spoofing Attack
A face authentication system is a biometric identification system
that takes the user’s face image as input to authenticate the user as
an known individual [2, 4, 10]. With the assistance of deep learning
techniques, the face authentication system can intelligently com-
pare the input image with pre-stored user facial information and
generate a pass/not pass result based on their similarities. Recently,
face ID-based authentication has been deployed in various scenar-
ios given its convenience and effectiveness in accomplishing the
authentication task [2, 4, 10].

Since the emergence of face authentication, face spoofing attacks
have also been evolving aiming to compromise the face ID-based au-
thentications. In the early days, the traditional face authentication
system employs 2D face images with face recognition algorithms
for user authentication [2, 4], which can be easily compromised by
image-based face spoofing attacks presenting a photo of the victim
user to the face authentication system [26, 41, 72]. As a solution to
image-based spoofing attacks, the authentication systems have now
evolved to examine two additional features to differentiate between
the real user and a spoofed face image. One category of approaches
employ 3D face models with the consideration of the depth infor-
mation as an integral part of the authentication [25, 45, 46, 78].
The other category introduces liveness detection to distinguish real
human faces from the spoofed face images or models [10, 40, 69].

3 SECURITY THREATS IN 3D SURVEILLANCE
We note that the 3D surveillance video involving 3D user face
models can be abused to compromise the aforementioned state-of-
the-art 3D and liveness-based face authentication mechanisms. It is
because the 3D requirement can be fulfilled by the 3D face models
in the video, and the liveness requirement can be achieved by the
sequence of the video frames interpreted as the liveness of real
human. Therefore, the 3D surveillance video system introduced in
Section 2.1 is subject to security issues if left unprotected, which is
the focus of this work. In particular, we assume that the sensitive
3D objects can be intercepted by adversaries at any phase of the
live video streaming workflow presented in Figure 1, especially at
the monitor end that the potential victim users under surveillance
have no control over. This security model is in line with the general
public concerns about video surveillance [8, 32, 74], due to the lack
of knowledge about the remote, untrusted party (i.e., the monitor)
who may have access to the surveillance video.

The 3D face model obtained by the attacker can be leveraged
to spoof third-party face authentication services, such as in Face
ID-based ATM [12], store payment [17], and airport security check-
in [18]. The threat model we target in this work is that the victim’s
face (captured in the surveillance video) may be abused by the
adversary (at themonitor end) to falsely pass the face authentication
services on behalf of the victim and thus gain benefits (e.g., purchase
or withdraw cash using the victim’s account). Note that this attack
does not need to be a targeted attack on a specific victim, as the
attacker can benefit by spoofing an arbitrary victim.

To verify and demonstrate the potential face spoofing attack
resulted from the 3D surveillance video, we conduct a proof-of-
concept case study of the potential threat model by using an RGB-D
image obtained from a 3D video [9] and a state-of-the-art 3D-based

face authentication system based on [47]. The architecture of the
face authentication system is shown in Figure 2. It takes a user
input image with depth information (i.e., in the RGB-D format) and
employs a pre-trained Siamese neural network, which consists of
two identical ResNet18 networks, to estimate the cosine similarity
of the input image with a pre-recorded reference RGB-D face image.
If the similarity score is larger than a certain threshold (e.g., 0.9),
the face authentication system would deem the user as passing the
authentication. We choose this face authentication system based on
the following considerations. First and foremost, it involves depth
information as a new dimension of the input data, which is one of
the most attractive features provided by the 3D surveillance video.
Second, for such a system deployed in the real world, it is impossible
to retrain the entire model when new users’ facial information is
added. Therefore, techniques like one-shot learning [67] must be
used, which is one of the great features of the Siamese networks.
Last but not least, it is a well recognized open-source project with
open-source dataset to train and test the model, which provides us
with full control of the face authentication system and thus more
flexibility to design and customize our defense strategy.

Figure 2: The architecture of the face authentication
model [47]. Two ResNet18 networks share the same weights,
creating a Siamese neural network.

Figure 3 presents the workflow of the attack, where the attacker
feeds the face authentication system with an RGB-D face model
extracted from the surveillance video, with the malicious attempt
of passing the authentication and thus spoofing the victim users.
In our experiments with 121 images obtained from the target 3D
video [9], all of the images result in a similarity score larger than
the threshold, indicating successful face spoofing attacks. Since
a successful attack only requires a single point of vulnerability
(i.e., one image), such a high percentage of success rate indicates
a significant security vulnerability in 3D video surveillance that
must be addressed.

While we only demonstrate one instance of the face authenti-
cation attack enabled by exploiting facial information in unpro-
tected 3D surveillance videos, the category of face authentication
attacks targeting similar image or video applications have been
demonstrated in the literature of various sources [3, 27, 63, 69].
Moreover, in addition to face authentication attacks, the exploited
facial information from images/videos can enable an even broader
range of security attacks, such as Deepfake attacks [57, 68] and
privacy leakage [22, 32, 33, 50, 59, 64, 74]. Overall, the threat model
of exploiting facial information in the victim videos have drawn
significant security concerns that must be addressed.
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Figure 3: Workflow of the 3D surveillance threat model: Face
ID spoofing attack.

4 PROPOSED DEFENSE: LIVSEC
4.1 System Overview
The aforementioned quality and security requirements for 3D video
surveillance motivate us to adopt an adversarial attack method [24,
35, 43] discussed in the machine learning community to form the
basis of the defense mechanism, because a successful adversarial at-
tack would add minimum perturbation to make the neural network
produce incorrect inference results while preserving the quality
of the image. This feature aligns with our intended security and
quality requirements in this work.

Inspired by the features of the adversarial perturbations, we
develop a live 3D surveillance defense mechanism, namely LiVSec,
to counter the face spoofing attack demonstrated in Section 3. In
essence, LiVSec accomplishes the defense by adding the adversarial
perturbations to the 3D surveillance videos in a benign manner,
so that even if the perturbed (and thus protected) 3D facial data is
extracted by an attacker, it cannot be used to issue a successful face
spoofing attack.

The end-to-end workflow of a 3D video surveillance system is
illustrated in Figure 1. To enable security protection, we propose to
integrate LiVSec into the video source, to ensure that the video de-
livered to the network for distribution is protected. The generation
of protected frames is the core of our defense mechanism, which
should work transparently to both the video source and the monitor
(i.e., meet the quality and real-time performance requirement).

Figure 4 shows the workflow of LiVSec in generating the pro-
tected 3D video frames at the video source. We first conduct pre-
processing to extract the 3D face model from the target surveillance
video (discussed in Section 4.2). Then, we develop a real-time per-
turbation generation model to inject the desired perturbations that
meet the security, quality, and performance requirements (discussed
in Section 4.3). The protected face are then used to replace the orig-
inal in the target video for streaming.

4.2 3D Face Extraction
A frame of a 3D video, as demonstrated in Figure 5, has a black
background with two components (i.e., RGB and depth). The upper
part of the frame is the RGB part like 2D videos, and the lower part
represents the depth values of the corresponding pixels in the RGB
part. It is worth noting that the depth values are represented by RGB
colors as well, as illustrated in the Hue color bar in Figure 5. For
example, we can observe that the face is closer to the camera than
the legs and feet. To protect the video frame, there is no need to add
perturbations to the entire frame but only the face part (both RGB
and depth), because (1) only the human face is considered security

Figure 4: The procedure of protected frame generation.

sensitive that we aim to protect; and (2) we must minimize the
injected perturbation and meet the quality requirement. Based on
the features of this 3D video, to obtain the RGB-D face, we must (1)
locate the face in the frame and extract the RGB facial information;
and (2) extract the depth facial information by translating the RGB-
based depth information to 1-D numerical values.

Figure 5: Example frame from a 3D video [9], which is
adopted for the design and evaluation of LiVSec.

4.2.1 RGB Facial Information Extraction. We use a 256 × 256 rec-
tangle filter to extract the RGB-D facial information from the frame
shown in Figure 5. The core idea is to find the column containing
the pixels on the top of the head, which is implemented in a binary
search algorithm. We determine if all the pixels in column𝑚𝑖𝑑 are
black (i.e., the sum of values in this column is 0). If it is true, it
means that the column we aim to find is to the left of this column,
otherwise it is to the right. The coordinate of the filter’s top left
pixel is defined as (ℎ,𝑤), where𝑤 is calculated by the left search
boundary 𝐿 minus 270, and we adopt a fixed ℎ value in the current
implementation, as the subject moves very little in the video scene.
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4.2.2 Depth Facial Information Extraction. The RGB-based depth
information is located by applying an offset to move the afore-
mentioned rectangle filter from the upper part to the lower part.
According to the design of the 3D video, in the RGB-based depth
channel, the hue value of the pixel can be used as the normalized
depth value (i.e., the normalized distance between that pixel and
the camera). The conversion process to obtain the normalized hue
value 𝐻 from RGB is shown in Equation (1):

𝐻 =



0 𝑖 𝑓 Δ = 0

(𝐺 − 𝐵
Δ

𝑚𝑜𝑑6)/6 𝑖 𝑓 𝐶𝑚𝑎𝑥 = 𝑅

(𝐵 − 𝑅
Δ
+ 2)/6 𝑖 𝑓 𝐶𝑚𝑎𝑥 = 𝐺

(𝑅 −𝐺
Δ
+ 4)/6 𝑖 𝑓 𝐶𝑚𝑎𝑥 = 𝐵

(1)

where 𝑅, 𝐺 , and 𝐵 are normalized to [0, 1], and 𝐶𝑚𝑎𝑥 and Δ are
defined as follows:

𝐶𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑅,𝐺, 𝐵)
𝐶𝑚𝑖𝑛 =𝑚𝑖𝑛(𝑅,𝐺, 𝐵)

Δ = 𝐶𝑚𝑎𝑥 −𝐶𝑚𝑖𝑛

Finally, we create a concatenation of the facial RGB and depth data
𝑥 as the input of the perturbation generation in LiVSec.

4.3 Protected Face Generation
The key step in generating a protected face in LiVSec is to derive
a generative model 𝑈 (𝑥), which generates the perturbation 𝛿 for
the input 𝑥 to defeat potential face spoofing attacks. To achieve
minimum perturbation and thus meet the quality requirement, we
take advantage of the unique depth information in the 3D video and
design a filter𝑚𝑎𝑠𝑘 that discards the unnecessary perturbations
added in the background. The depth information represents the
distance between that pixel and the 3D camera and, therefore, it is
useful to distinguish the face and the background given that the
depth of the background is much larger or even infinity. By applying
𝑚𝑎𝑠𝑘 , the value of the perturbation 𝛿 is updated to 𝛿×𝑚𝑎𝑠𝑘 , and the
𝑐𝑙𝑎𝑚𝑝 (·) function is called to ensure that the abstract value of 𝛿 is
smaller than the perturbation strength 𝑝𝑒𝑟𝑡 , which is a pre-defined
parameter. After that, another 𝑐𝑙𝑎𝑚𝑝 (·) function clips the values of
the perturbed face 𝑥 + 𝛿 into a valid range ([−1, 1] in our case) to
produce the final protected face 𝑥 ′. A protected frame to be sent
for streaming is then generated by replacing the original face with
the protected one, which is the last step of the protected 3D frame
generation.

4.3.1 Perturbation Generation. We employ U-Net [54] as the gen-
erative model for perturbation generation, which is originally de-
signed for image semantic segmentation when it was first intro-
duced but later applied in generating adversarial perturbations [49,
51]. It is lightweight and only requires a single forward to produce
the perturbations, which is much faster than the iteration-based
adversarial attacks (e.g., C&W attack [24]) and thus helps achieve
the real-time performance. We follow the architecture of the origi-
nal U-Net but change the number of input channels to 4, and the
input channel sizes of the four down-sampling layers to 32, 64, 128
and 256. The output channel number of the fourth down-sampling

layer is 512. The input/output channel numbers of the up-sampling
layers are changed accordingly.

4.3.2 Training LiVSec. Algorithm 1 describes the training process
of LiVSec. During the training, the reference input𝑥𝑟𝑒 𝑓 is the current
image loaded, while the user input 𝑥 is randomly chosen from the
other images of the same user. There is no need to use images
from other users because the similarity scores between them are
already smaller than the threshold. After getting the protected face
𝑥 ′ following the steps described in both Section 4.3 and Algorithm 1,
we calculate the cosine similarity score between 𝐹 (𝑥 ′) and 𝐹 (𝑥𝑟𝑒 𝑓 )
to obtain the value of our loss function, where 𝐹 (·) is the face
authentication model, and its output is a feature vector of the input.
The cosine similarity score between the two vectors 𝑥1 and 𝑥2 is
defined as follows [6]:

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑥1 · 𝑥2

max(∥𝑥1∥2 · ∥𝑥2∥2, 𝜖)
(2)

where 𝜖 is a small number to avoid division by zero. Furthermore,
an optimizer is used to help update the weights of𝑈 (·) to minimize
the value of the loss function. The training keeps updating 𝑈 (·)
until the iteration number reaches𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠 .

Algorithm 1: LiVSec Training Algorithm
Input: Training dataset 𝑋 = {𝑥11, ..., 𝑥1𝑚, 𝑥21, ..., 𝑥𝑛𝑚},

where 𝑛 is the number of users and𝑚 is the number
of poses of each user, the corresponding depth mask
𝑀 = {𝑚𝑎𝑠𝑘11, ...,𝑚𝑎𝑠𝑘𝑛𝑚}, perturbation strength
𝑝𝑒𝑟𝑡 , maximal number of epochs𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠 .

Result: Trained perturbation generator𝑈 (·).
Freeze the weights of the face authentication model 𝐹 (·).
Randomly initialize𝑈 (·).
for 𝑘 ← 1 to𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠 do

for 𝑗 ← 1 to 𝑛 do
for 𝑖 ← 1 to𝑚 do

𝑥𝑟𝑒 𝑓 ← 𝑥 𝑗𝑖 ;
𝑥 ← randomly choose one from
{𝑥 𝑗1, ..., 𝑥 𝑗𝑚} − {𝑥 𝑗𝑖 };

𝛿 ← 𝑈 (𝑥);
𝛿 ← 𝛿 ×𝑚𝑎𝑠𝑘 𝑗𝑖 ;
𝑥 ′ ← 𝑥 + 𝑐𝑙𝑎𝑚𝑝 (𝛿,−𝑝𝑒𝑟𝑡, 𝑝𝑒𝑟𝑡);
𝑥 ′ ← 𝑐𝑙𝑎𝑚𝑝 (𝑥 ′,−1, 1);
𝐿𝑜𝑠𝑠 ← 𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐹 (𝑥𝑟𝑒 𝑓 ), 𝐹 (𝑥 ′));
update𝑈 (·) to minimize 𝐿𝑜𝑠𝑠;

end
end

end

5 IMPLEMENTATION AND CASE STUDY
We implement and deploy LiVSec into an end-to-end live 3D video
streaming system, following the 3D video surveillance workflow
illustrated in Section 2.1. In addition, we also implement the face
authentication system introduced in Section 3 to evaluate LiVSec
against face authentication attacks. In this section, we discuss the
system implementation details, as well as a case study to demon-
strate the basic workflow and functionality of LiVSec.
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5.1 3D Surveillance Video Streaming System
Figure 6 shows the architecture of the end-to-end LiVSec-based
video streaming system, which involves a live video content server
and a client. At the server end, the live video source is captured by
a 3D camera, perturbed by LiVSec, and served on a web server. The
client requests and streams the video from the content server for
surveillance monitoring.

• Live Surveillance Video. In our implementation, we adopt a
3D video dataset (Dataset #2 described in Section 6.1.1 [9]) to
serve as the live video source captured from a 3D camera. We
adopt FFmpeg [65] as the decoder to read the video frame by
frame in the 𝑖𝑚𝑎𝑔𝑒2𝑝𝑖𝑝𝑒 mode, with the 𝑟𝑔𝑏24 pixel format and
the 𝑟𝑎𝑤𝑣𝑖𝑑𝑒𝑜 codec.
• LiVSec. LiVSec accepts each raw frame from the input pipe and
produces protected 3D surveillance frames to the output pipe,
which is described in Section 4. Both the raw frame and the
protected frame are transmitted in byte arrays.
• Virtual Camera. After the protected frames are generated by
LiVSec, FFmpeg is further used as the encoder to write the frames
to a virtual 3D camera device, which is simulated by v4l2loopback [79].
The virtual camera works as the source for the LiVSec-protected
live video stream deployed on the web server following the DASH
video streaming standard [58]. In our implementation, FFmpeg
receives the protected frames from the output pipe and writes
them to the 𝑣4𝑙2 camera device under the speed of 24 FPS. The
frames are sent with the same format, i.e., 2048× 2048 resolution,
𝑟𝑎𝑤𝑣𝑖𝑑𝑒𝑜 codec, and 𝑟𝑔𝑏24 pixel format. Then, we adopt Dash-
Cast [56] as the packager to generate live video streams from the
virtual camera with 1-second segment duration and 5𝑠 time shift,
i.e., all the video segments will be kept on the server side since
the video is 5-second long.
• Web Server. The generated live video segments are deployed on
the web server for the client to request via HTTP following the
DASH standard [58]. In our system implementation, we employ
a web server for live DASH streaming [36].
• Client. On the client side, we use GPAC MP4Client [37] to re-
ceive and playback the protected video. In our system, we stream
both the RGB and depth (in color map) of the frame and display
them separately at the player, considering the RGB and depth
information may be used separately for different surveillance
tasks at the receiver/monitor, as described in Section 2.1.

Figure 6: Architecture of the end-to-end LiVSec-based live
surveillance video streaming system.

5.2 3D Face Authentication System
We implement the 3D face authentication system (described in
Figure 2) to facilitate the evaluation of LiVSec against face authenti-
cation attacks. The face authentication model takes two 300×300×4
RGB-D images as inputs; one of them is the user input image ex-
tracted from the 3D surveillance video, and the other is a pre-
recorded reference image. Inside the authentication model, two
ResNet18 models share identical weights and construct a Siamese
network to generate two 128 × 1 feature vectors for the two inputs.
In the next step, cosine similarity (formulated as Equation (2)) is
employed to measure the distance between these two feature vec-
tors, and the measured result turns out to be a number between
-1 and 1. Based on the definition of cosine similarity, -1 means the
farthest distance (i.e., the values of two images are opposite) while
1 means the closest (i.e., two images are identical). Lastly, the face
authentication system determines if the user should pass the au-
thentication by checking if the similarity score is larger than 0.9 (i.e.,
passing the authentication) or not. For cosine similarity formulated
in Equation (2), 𝜖 is set as 1e-8.

We use Dataset #1 (described in Section 6.1.1) [31] to train the
face authentication system. Also, we choose Cosine Embedding
Loss as the loss function to maximize the dissimilarity between two
inputs 𝑥1, 𝑥2, i.e., the loss between two inputs is minimized. The
loss is computed based on the cosine similarity between the inputs
and their corresponding label 𝑦. When inputs 𝑥1 and 𝑥2 come from
the same user, the label 𝑦 is 1, otherwise, it is -1. The loss is defined
as

𝑙𝑜𝑠𝑠 (𝑥1, 𝑥2) =
{ 1 − 𝑐𝑜𝑠 (𝑥1, 𝑥2) 𝑦 = 1
𝑚𝑎𝑥 (0, 𝑐𝑜𝑠 (𝑥1, 𝑥2) −𝑚𝑎𝑟𝑔𝑖𝑛) 𝑦 = −1 (3)

where𝑚𝑎𝑟𝑔𝑖𝑛 is set as 0.5 in the training.We use stochastic gradient
descent (SGD) as the optimizer to train the 3D face authentication
system, and the learning rate, weight decay and momentum for it
are 0.01, 0.0001, and 0.9, respectively. In addition, the batch size is
128, while the maximum number of epochs is set as 200.

5.3 Case Study
We perform a case study to demonstrate the procedure and the
defense effectiveness of LiVSec using a sample image from Dataset
#2 (described in Section 6.1.1) [9], which is illustrated in Figure 7.
The first column shows the 3D face image of the user, which is a
reference input that has been pre-registered with the face authenti-
cation system. The second column shows the 3D face data extracted
by an adversary from the 3D surveillance video and can be used
as the user input for face authentication. Without enabling LiVSec,
the similarity score between the reference input and the user input
is 0.986, which indicates that the adversary can impersonate the
legitimate user by feeding such face model to the face authentica-
tion system. After deploying LiVSec, as shown in the third column,
the similarity score decreases to 0.779, which makes the adversary
no longer capable of accomplishing a face spoofing attack. Mean-
while, the quality impact caused by the protected face is minimal,
meeting the quality requirement and thus ensuring that the surveil-
lance task at the monitor side is uninterrupted. More detailed visual
results with additional images, as well as sample videos visually
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demonstrating the original and protected videos, can be found in
the repository of the project at https://github.com/hwsel/LiVSec.

Figure 7: A case study on using LiVSec to defend against face
spoofing attack using a sample image from the dataset [9].
From left to right, the three columns are the RGB-D data
of: reference input pre-registered in the face authentication
system, user input extracted from a 3D surveillance video,
and the protected user input by applying LiVSec.

6 EXPERIMENTAL RESULTS
6.1 Experimental Setup
6.1.1 Datasets. We adopt two datasets for the evaluation of LiVSec:

Dataset #1 [31] contains 1581 RGB-D images from 31 users,
captured by a Microsoft Kinect V1 depth camera [1]. For each user,
there are 17 different poses, including 13 face orientations and 4
facial expressions (i.e., smiling, sad, yawn, and angry). 3 images are
collected for each different pose of each user. The RGB-D images of
26 out of 31 users are used for face authentication system training,
and those of the rest 5 users are used for validation. In other words,
1326 images are used for training, and 255 images are used for
validation. During the training/validation process, we use all images
as the reference input sequentially and choose different random
images as the user input. The validation dataset is also used in
our evaluation, where we choose a fixed image of each user as
the reference input and the rest 50 images of that user as the user
input. Since we use the images of 5 users for evaluation, in total
we have 50 × 5 = 250 test cases. In this dataset, RGB images are
1280 × 960𝑝𝑥 as 32-bit bitmaps, while the depth information has
been pre-processed by the dataset provider and is stored in text
files in the format of integer numbers to represent the depth values,
with the resolution of 640× 480𝑝𝑥 . The images from Dataset #1 are
center-cropped and resized to 300×300𝑝𝑥 for the face authentication
system and the perturbation generator.

Dataset #2 consists of 121 continuous RGB-D frames extracted
from a 5-second 3D video clip, which is from a demo video shot
by Azure Kinect depth camera and edited by Depthkit software [9].
The demo contains a 3D video of one user, and each frame of the
video contains the face of the user. In our experiments, we use the
first frame as the reference input and all the frames as the user

input. This is because, during the streaming, it could be impossible
to pre-store a user’s reference input, so we naturally choose the
first frame as the reference. It is different from Dataset #1 because
this frame needs to be protected as well. Therefore, in total, we
have 121 test cases for Dataset #2. In this dataset, the video frames
are in the size of 2048 × 2048. The top half of a frame is the RGB
data of the user and the bottom half is the depth information. The
images from Dataset #2 are cropped to 256 × 256 by applying the
face locator discussed in Section 4.2.

6.1.2 Parameter Settings. For training, the perturbation strength
is set as 16/255, the maximal number of epochs 𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠 is
200. Stochastic gradient descent (SGD) is used as the optimizer
with learning rate 0.01 and weight decay 0.0001. The similarity
threshold for the face authentication system is set as 0.9. For RGB
facial information extraction, ℎ is fixed as 140.

6.1.3 Evaluation Metrics. We employ the following security, qual-
ity, and performance metrics in our evaluations.

Security Metric: Success Rate. Recall that we use cosine simi-
larity (in Equation (2)) to measure the similarity of two inputs, so
the higher the similarity score is, the more similar the two images
are. For two identical images, their similarity score would be 1.
Based on this observation, we define a user input whose original
similarity score is larger than the authentication threshold (i.e., 0.9
in our experiments) as a valid test, because originally it can be used
to bypass the face authentication system. Then, if the similarity
score of a protected image falls below the authentication threshold,
it is counted as an effective defense. The success rate metric is then
defined as the ratio between the effective defenses and the valid tests.

Quality Metrics: Normalized L2 Norm and Learned Per-
ceptual Image Patch Similarity (LPIPS). To evaluate whether
the protected 3D surveillance video meets the quality requirement
described in Section 1, we first use normalized L2 norm to measure
the quality of protected frames, which is widely adopted in the ma-
chine learning community [24, 29, 61] and in the related work [63].
We also use LPIPS [30, 76] to evaluate the perceptual similarity
(i.e., the quality) between the protected frames and the original
frames, which is a widely adopted perceptual similarity metric in
the community better reflecting human visual experience than the
traditional PSNR or SSIM metrics. It utilizes deep features of a well-
trained image classification model to achieve perceptual similarity
judgments. Similar to the normalized L2 norm, lower values mean
closer/similar. We adopt the open-source LPIPS project [75] to per-
form our evaluations with version 0.1 and AlexNet. Note that we
only use LPIPS to evaluate the RGB part of the frames.

Real-Time Performance Metric: Frame Rate. We employ
frame rate as the metric to evaluate if the proposed approach meets
the real-time performance requirement:

𝑓 𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒 =
# 𝑓 𝑟𝑎𝑚𝑒𝑠 𝑠𝑒𝑛𝑡

𝑡𝑖𝑚𝑒 𝑡𝑜 𝑠𝑒𝑛𝑑 𝑡ℎ𝑒 𝑓 𝑟𝑎𝑚𝑒𝑠
(4)

where the time to send the frames includes the time for the system
to read the frames from the video, add perturbations, and send them
for video streaming. This metric only applies to Dataset #2 that has
a video sequence involved.

https://github.com/hwsel/LiVSec
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6.2 Security Evaluation
The security evaluation results are shown in Table 1. We observe
that, after deploying LiVSec, the average similarity scores decrease
by 44% and 18% for Dataset #1 and #2, respectively. Both average
similarity scores with LiVSec are lower than the threshold (i.e., 0.9),
which indicates successful security defense. To better illustrate the
similarity score changes, we present the distributions of all test
cases for Datasets #1 and #2 in Figure 8 and Figure 9, respectively.
We observe an obvious boundary between the two cases with and
without LiVSec, which justifies that LiveSec meets the security re-
quirement. Furthermore, the defense success rate is 100% for both
datasets. Specifically, in Dataset #1, there are 228 out of the 228 valid
cases that prevent the face spoofing attack successfully. Similarly,
in Dataset #2, the defense is successful for all the 121 cases.

Table 1: Security evaluation results for both datasets.

Dataset #1 Dataset #2

Avg. Similarity Score w/o LiVSec 0.966 0.988
Avg. Similarity Score w/ LiVSec 0.539 0.806

Success Rate
100%

(228/228)
100%

(121/121)

Figure 8: Similarity score distributions for Dataset #1.

6.3 Quality Evaluation
We use normalized L2 norm and LPIPS to evaluate the quality of the
protected faces. The distribution of the results is shown in Table 2.
For Dataset #1, the average L2 norm is 0.0315 and the average LPIPS
is 0.0442, and for Dataset #2 the results are 0.0713 (average L2 norm)
and 0.1764 (average LPIPS). Overall, the L2 norm and LPIPS results
of both datasets fall in a low and narrow range of values, indicating
the robustness of LiVSec in meeting the quality requirement.

Figure 9: Similarity score distributions for Dataset #2.

Table 2: Quality evaluation results for both datasets. Normal-
ized L2 norm and LPIPS are used as the evaluation metrics.

Norm. L2 norm LPIPS
Dataset #1 Dataset #2 Dataset #1 Dataset #2

Minimum 0.0267 0.0692 0.0288 0.1551
First Quartile 0.0298 0.0709 0.0370 0.1727

Median 0.0311 0.0714 0.0443 0.1787
Thrid Quartile 0.0334 0.0718 0.0514 0.1823
Maximum 0.0357 0.0754 0.0627 0.1887
Average 0.0315 0.0713 0.0442 0.1764

6.4 Performance Evaluation
We further evaluate the performance of LiVSec in term of meeting
the real-time requirement using Dataset #2, which is shown in
Table 3. In the original security strategy (i.e., the “Reuse-1" column),
it takes 3.84 seconds to process and send all the 121 frames, which
results in a 31.51 FPS performance. To further explore the potential
of the frame rate, we deploy a “Reuse-𝑋 " strategy, where we reuse
the perturbation of the current frame for the next 𝑋 − 1 frame(s), to
save the perturbation generation time and improve the frame rate.

Table 3 shows that we can gain improved performance by ap-
plying the “Reuse-𝑋 " strategy. For example, Reuse-5 increases the
frame rate from 31.51 to 34.38. Meanwhile, we observe that the suc-
cess rate remains at 100% in all the reuse scenarios, which preserves
the security of the system. Also, the average similarity scores with
LiVSec deployed decreases in both Reuse-5 and Reuse-10 cases but
only slightly. For quality, both the normalized L2 norm and the
LPIPS almost do not change when applying the reuse strategies.
Overall, our experiments show that the “Reuse-𝑋 " strategy helps
improve the performance while posing minimum impact to the
security and quality metrics. It is worth noting that the original
frame rate of the 3D surveillance video is 23.98 FPS, which can be
sufficiently supported by LiVSec without performance downgrade;
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Table 3: Security, quality, and performance evaluation results
w/ Reuse-𝑋 strategy using Dataset #2 with 121 frames.

Reuse-1 Reuse-5 Reuse-10

Avg. Similarity Score
w/o LiVSec

0.988 0.988 0.988

Avg. Similarity Score
w/ LiVSec

0.806 0.804 0.799

Success Rate
100%

(121/121)
100%

(121/121)
100%

(121/121)
Avg. Norm. L2 Norm 0.0713 0.0714 0.0714

Avg. LPIPS 0.1764 0.1762 0.1758
Time Cost (Sec) 3.84 3.52 3.43
Frame Rate (FPS) 31.51 34.38 35.28

furthermore, the experiment results imply that LiVSec can work
with higher framerate videos (i.e., up to 35 FPS).

Furthermore, we conduct a timing breakdown analysis on an ar-
bitrary frame from Dataset #2 to better understand the performance
of the LiVSec system (i.e., the workflow illustrated in Figure 4). The
timing breakdown results are shown in Figure 10. We observe that
the key step of LiVSec, Protected Face Generation (i.e., Step ② in Fig-
ure 4), only takes 5.88 ms (around 20% of the total time). Specifically,
the perturbation generation itself only takes 3.99 ms, accounting
for around 13% of the total time. Overall, we note that the most
time-consuming components in the system are the I/O operations
(i.e., writing/reading data to/from disk, reading an original frame
from the pipe, and writing the protected frame back to the pipe),
which account for over 70% of the total time. Based on the timing
analysis, we can conclude that the perturbation generator has ef-
ficient timing performance compared to other components in the
system, and the system can be further optimized by improving the
I/O capability.

Figure 10: Timing analysis of the LiVSec system.

7 RELATEDWORK
Among all the related works, VVSec [63] is probably themost closely
related work targeting similar video application (volumetric video)
and threat models (face authentication attack) with LiVSec. How-
ever, VVSec only targets the video-on-demand (VOD) scenario,
where the video is pre-recorded that allows offline processing
without the real-time processing requirements. Under this con-
text, VVSec adopted an offline, iterative perturbation generation
approach to protect the victim video, and the perturbation gener-
ation process requires a significantly long processing time, at the
magnitude of a few seconds, which does not meet the real-time
performance requirement for live 3D surveillance videos targeted
by LiVSec. To confirm this observation, we conduct a quantitative
experimental comparison with VVSec (based on the VVSec open
source release in [62]) in terms of security, quality, and performance
between the two approaches, the results of which are shown in
Table 4. In the experiments, only the videos in the validation part of
Dataset #1 are used. We observe that both systems successfully de-
fend all the attacks, and LiVSec runs almost 100x faster than VVSec
as benefiting from the proposed real-time generative model for per-
turbation generation. It is worth noting that VVSec produces less
perturbation (in terms of L2 norm and LPIPS) than LiVSec given the
finer-grained, iterative perturbation process and, therefore, it can
support the entertainment video streaming scenario with higher
quality requirement than the surveillance video targeted by LiVSec.
We will discuss about the quality limitation of LiVSec in Section 8.

VR/AR Security/Privacy. Security/privacy has been deemed
as an important topic in the multimedia and VR community given
the rich 3D representation of the multimedia content and the sig-
nificant real user interactions. The existing security/privacy works
have targeted several directions. The first direction is to restrict
the access to sensitive input (e.g., sensor) data [32, 33, 59, 64]. For
example, both DARKLY [33] and PlaceAvoider [64] employ com-
puter vision algorithms to address such concerns, which target
2D images/videos in computer vision applications and first-person
cameras, respectively. Jana et al. [32] propose a new OS abstrac-
tion to build a fine-grained permission system that only exposes
higher-level objects instead of raw sensor data to AR applications.
PrivacyEye [59] designs a mechanical camera shutter to occlude
the first-person camera private scenes. The second direction tar-
gets security or privacy concerns caused by malicious or buggy
VR/AR outputs [38, 55]. For instance, Arya et al. [38] utilize policy
constraints to detect and eliminate malicious VR outputs. The third
direction aims to protect users’ biometric information or unique pat-
terns to keep them anonymized, in which differential privacy (DP)
has been studied [23, 39]. In addition, several recent works have fo-
cused on addressing the security challenges of user authentication
and interactions in VR/AR applications [21, 42, 44]. Overall, these
existing works all target the explicit security/privacy attacks that ei-
ther alter or gain unauthorized accesses to the sensitive data; hence,
they do not need to consider the quality requirements. Also, only
several solutions can achieve real-time performance [32, 39, 59]
in their specific application scenarios. Different from the existing
works, LiVSec mainly focuses on the implicit security/privacy impli-
cations from the rich multimedia content, which is an orthogonal
dimension with novel research challenges and contributions.
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Table 4: Comparison between VVSec [63] and LiVSec using Dataset #1.

Paper Application Scenario Success Rate Avg. L2 Norm Avg. LPIPS Avg. Running Time (s)

VVSec [63] Volumetric video 100% 0.0053 0.0017 4.3
LiVSec 3D surveillance 100% 0.0315 0.0442 0.045

SurveillanceVideo Security/Privacy. Existingworks of surveil-
lance video security/privacymainly focus on 2D surveillance videos.
Surveillance videos may contain biometric (e.g., face, iris, and fin-
gerprint) and non-biometric (e.g., text and license plate) information
that are security or privacy sensitive. Since (a) humans are often
the subject of interest in surveillance videos, and (b) face and body
attributes provide personal privacy information like identity, age,
race, and gender, many existing works [34, 48, 53] aim to protect
face and body in the surveillance videos. Common methods to
solve these security/privacy concerns include (1) encrypting the
selected portion (i.e., the region of interest) of the video [48]; (2)
de-identification [53], which generates an alternative of the orig-
inal face to hide the identity; (3) pixelation [74], which blurs the
sensitive images; and (4) privacy-preserving cameras have been de-
signed to achieve pre-capture privacy by either using other sensors
(e.g., a thermal sensor) to avoid collecting RGB data directly [50],
or applying well-designed optical lens to the camera to filter un-
wanted information [22]. These existing protection mechanisms
only consider 2D videos, while our target application scenario is 3D
video surveillance. Moreover, solutions that fall into categories (1),
(3) and (4) would block the human vision (i.e., users can no longer
recognize the face features from the protected video), and solutions
like (2) would alter the appearance of the face, which would also
block the human vision. Therefore, all the 4 categories of solutions
do not meet the requirements for protecting the security of live 3D
surveillance videos.

Adversarial Attacks. Adversarial attacks have been a popular
security topic discussed in the machine learning community. The
classical adversarial attack methods [24, 35, 43] add small perturba-
tions to the input images of deep learning models to maliciously
alter the inference results. Inspired by the classical adversarial at-
tack, a small number of recent works utilize adversarial attacks
for benign use cases as a means of obfuscation [60, 70, 73]. LiVSec
was also inspired by these adversarial attack techniques to develop
the perturbation generation method; however, none of the existing
approaches have targeted live 3D video with the real-time perfor-
mance requirement, which presents unique challenges to address in
the design of LiVSec. Furthermore, the defense mechanisms against
adversarial attacks have been an active research area in the machine
learning related communities [71], which can motivate further re-
search on the potential threat models against LiVSec.

8 LIMITATIONS OF LIVSEC
During the evaluations, we observe that a notable limitation of
LiVSec is the non-ideal quality of the protected video frames with
the amount of perturbations generated by the real-time generative
model. For example, LiVSec-protected frames would present per-
turbations visible to human eyes, which is less competitive than
iterative-based perturbation generation approaches (e.g.,VVSec [63],

as compared in Table 4.) Due to this limitation, the current version
of LiVSec can only be applied to the application scenarios that do
not require significantly high viewing quality; for example, it can
meet the requirement of surveillance videos targeted by this paper
but cannot support the entertainment videos where such amount of
perturbations could impact the users’ quality of experience. While
investigating this limitation, we found that it is due to the trade-off
between the perturbation generation speed and quality, as similar
quality limitations can also be identified in other works involving
real-time generative models [49, 51]. In the future work, we plan to
conduct a more in-depth study on optimizing the generative model
to address the quality limitation, e.g., by fine-tuning the model
parameters to seek a balance between the speed and quality or by
accelerating the perturbation generation process.

Also, LiVSec only supports a single person/face in the surveil-
lance video; therefore, our evaluations are limited to surveillance
videos that contain one person. Also, the face cropping/extraction
is a necessary step for LiVSec, which we presented in Section 4.2.
Moving forward, to support surveillance video containing multiple
persons, the fundamental methodology of LiVSec would not change,
but it requires more system acceleration efforts (e.g., via parallel
processing) to inject multiple perturbations while maintaining the
same real-time performance. In addition, improving and evaluating
LiVSec under adaptive streaming scenarios (e.g., varying network
conditions) would require more in-depth studies on the streaming
of perturbed videos, which we target as future work.

9 CONCLUSION
We for the first time investigated the security implications of live
3D video surveillance. We identified the security vulnerabilities
caused by the 3D sensitive objects (e.g., human face) in the surveil-
lance video that lead to spoofing attacks. To address the security is-
sue, we developed a novel perturbation generation method, namely
LiVSec, which employs a real-time generative neural network model
to inject small perturbations to the 3D video frames and protect
the sensitive objects. LiVSec makes non-conventional use of the
traditionally malicious attack method as a benign defense mech-
anism, which achieves the desired security goals. We evaluated
LiVSec on two datasets involving RGB-D images and 3D video,
which demonstrates effective security protection, acceptable quality
degradation, and real-time performance, meeting the requirements
of live 3D video surveillance. The repository of the project is at
https://github.com/hwsel/LiVSec.
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