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ABSTRACT

With the rapid growth of video content consumption, it is important

to deliver high-quality streaming videos to users even under limited

available network bandwidth. In this paper, we propose EVASR,

a system that performs edge-based video delivery to clients with

salience-aware super-resolution. We select patches with higher

saliency score to perform super-resolution while applying the sim-

ple yet efficient bicubic interpolation for the remaining patches

in the same video frame. To efficiently use the computation re-

sources available at the edge server, we introduce a new metric

called łsaliency visual qualityž and formulate patch selection as an

optimization problem to achieve the best performancewhen an edge

server is serving multiple users. We implement EVASR based on the

FFmpeg framework and conduct extensive experiments for evalua-

tion. Results show that EVASR outperforms baseline approaches in

both resource efficiency and visual quality metrics including PSNR,

saliency visual quality (SVQ), and VMAF.
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· Information systems→Multimedia streaming; · Comput-

ing methodologies → Reconstruction; Image processing.
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1 INTRODUCTION

With the increased popularity of video sharing and streaming plat-

forms, nowadays, users are spending more time watching online

streaming videos using their devices. However, the limited available

network bandwidth cannot keep up with user’s ever-increasing

demand for higher video quality. To address this problem, advanced

video codecs such as VVC and AV1 are developed with the goal of
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improving the video compression performance. In addition, exist-

ing works have also proposed to use super-resolution for trading

increased computation for reduced network bandwidth usage and

better visual quality, e.g., [25].

With super-resolution, during streaming, a low resolution video

is downloaded along with a trained deep-learning model. The size

of the model is much smaller compared to the video, e.g., 100

KBytes only. At the video receiver, the model is used for upscal-

ing the low resolution frame to higher resolution and enhancing

the video quality. For example, NAS [25] uses multi-scale deep

super-resolution (MDSR) [19] for upscaling low resolution videos

downloaded via DASH to a high resolution of 1080p. To improve

the super-resolution visual quality, it proposes to train a model

for each video. Unlike video compression that aims to optimize

the rate-distortion curve, deep-learning-based super-resolution can

use additional computation at the video receiver for improving the

visual quality. Thus, deep-learning-based super-resolution comple-

ments recent advances in next-generation video codecs such as

VVC and AV1.

However, an issue with NAS [25] is the slow super-resolution

inference speed. It was shown in [7] that the inference throughput

of NAS is less than 15 frames per second (fps), which is much smaller

than typical video frame rate of 24-30 fps. To enable real-time video

quality enhancement, both NEMO [24] and dcSR [7] are proposed

to improve the inference speed by applying deep-learning-based

super-resolution on selected frames only. To do so, both works

require changes to the decoder workflow of the video codec, e.g.,

the H.264 decoder.

In this work, we propose EVASR, an edge-based video delivery

system to clients. EVASR uses salience-aware super-resolution to

enhance the video quality for clients. It is different from prior works

in three ways. First, we consider a provider-edge-client scenario,

where an edge server with computation resources can perform

intensive super-resolution tasks on behalf of the client. The edge

server may simultaneously serve multiple users, which makes it

necessary to allocate resources appropriately among users. Second,

to efficiently use the limited available computation resources while

supporting real-time video super-resolution, we propose to perform

deep-learning-based super-resolution on a selected set of patches

in a frame, taking into account different saliency in different parts

of the video frame, instead of the full frame. For the remaining

patches, EVASR performs bicubic interpolation for upscaling. Third,

EVASR performs super-resolution directly on decoded frames. It

does not require any changes to the video codecs and thus can work

with any existing video codecs.

To provide better visual quality among all request users, we

formulate the patch selection problem as an optimization problem

https://doi.org/10.1145/3587819.3590967
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with the objective of maximizing the saliency visual quality for

all users served by the edge server. Since human eyes are more

sensitive to areas with higher saliency, we propose a new metric,

the saliency visual quality (SVQ), which places more emphasis (i.e.,

weights) on the visual quality of areas on the frame where human

eyes are more sensitive. The goal of our SVQ optimizer (SVQO)

is to maximize the saliency visual quality subject to a number of

constraints.

We implement our EVASR system based on the FFmpeg frame-

work [18] and perform extensive evaluations. Results show that

the SVQO optimizer can effectively select a set of patches for super-

resolution that improves both the saliency visual quality and the

VMAF quality metric. In addition, EVASR can support real-time

per-frame super-resolution to 1920x1080 and can support multiple

clients’ super-resolution requests simultaneously. In summary, this

paper makes the following contributions:

• We propose EVASR that performs edge-based video delivery

with salience-aware super-resolution with three components:

the video service provider, the edge server, and the clients.

• We integrate our EVASR systemwith super-resolution and saliency

detection to achieve patch-based super-resolution on the edge

server side. This approach achieves a balance between visual

quality performance and computational resource usage.

• To select the set of patches for super-resolution, we formulate

the patch selection problem as an optimization problem with the

objective of maximizing the saliency visual quality.

• To perform a comprehensive evaluation of our EVASR system,

we conducted extensive experiments using high quality videos.

Multiple visual quality metrics were used in our evaluation:

PSNR, saliency visual quality(SVQ), and VMAF. Results show

that EVASR outperforms other baseline approaches.

2 BACKGROUND AND RELATED WORK

2.1 Super Resolution

The super-resolution (SR) field has advanced rapidly from its origins

in the deep learning age. The SRCNN model [9, 10] was the first to

apply convolutional neural networks (CNNs) to super-resolution.

FSRCNN [11] was an evolution of SRCNN. It operated directly on

a low-resolution input image and applied a deconvolution layer

to generate high-resolution output. VDSR [15] was the first to

apply residual layers [13] to the SR task, allowing for deeper super-

resolution networks. DRCN [16] introduced recursive learning in a

very deep network for parameter sharing. Notably, Shi et al. pro-

posed ESPCN [22] that uses łPixelShufflež, a method for mapping

values at low-resolution positions directly to positions in a higher-

resolution image. The łPixelShufflež operation is more efficient

compared to the deconvolution operation. Many subsequent super-

resolution works use the łPixelShufflež method in their proposed

networks. SRResNet [17] used a modified residual layer tailored for

the super-resolution application. EDSR [19] further modified the SR-

specific residual layer from SSResNet and introduced a multi-task

objective in MDSR. SRGAN [17] applied a generative adversar-

ial network (GAN) [12] to SR, allowing better resolution of high-

frequency details. While recent SR models can achieve good visual

quality performances, they are usually very big, containing mil-

lions of parameters. As a result, super-resolution inference can take

a long time, which makes them infeasible for video-based super-

resolution with time constraints. On the other hand, the ESPCN

model has only about 26K parameters while achieving good visual

quality performance. Considering the trade-off between perfor-

mance and inference speed, we use ESPCN in our current EVASR

implementation.

2.2 Video Quality Enhancement

Besides its use in traditional computer vision tasks, recently, super-

resolution is also used for video quality enhancement. Due to the

limitation of network capacity, it is infeasible for many users to

obtain high-quality videos during streaming. Thus, many recent

works have been proposed to stream low-resolution videos to end

users and enhance the video quality via super-resolution.

For example, NAS [25] is the first work that proposes to perform

super-resolution on the client side. It adopts a multi-scale deep

super-resolution model MDSR [19] to upscale input videos of differ-

ent resolutions, e.g., 240p, 360p, 540p, to a 1080p output. NEMO [24]

is a system that aims to support real-time video super-resolution

on mobile devices from 240p to 960p. Instead of per-frame super-

resolution, NEMO only applies super-resolution to a few selected

frames, caches their outputs, and transfers them to other frames.

However, all frames are important in a video since all of them will

be watched by users. If there exists a large quality gap between

two consecutive frames, human eyes can be very sensitive to such

changes. In addition, caching may also introduce other issues, such

as memory. LiveNAS [14] focuses on video uploading and intro-

duces a live video ingest framework that enhances video quality by

leveraging the super-resolution model training at ingest servers. It

allocates some bandwidth to transmit selected high-quality patches

to perform online model training and uses the remaining band-

width for uploading live video in lower quality. Baek et al. proposed

dcSR [7] that performs super-resolution on the I-frames of a video

only, based on the insight that P- and B-frames can benefit from

enhanced I-frames. They integrated dcSR with the H.264 decoder

to exploit the benefit of super-resolution for I-frames only. dcSR

requires that the decoding process be paused and wait for super-

resolution to complete before resuming. FOCAS [23] uses a foveated,

cascaded super-resolution method to produce the highest quality

at the foveal region (the central region in the frame). However, this

assumes that the user will always focus on the central region of the

frame, which may not always be the case.

Unlike prior works, in this paper, we propose to save compu-

tation by performing super-resolution on selected patches with

high saliency in a video frame. We further design an optimization

framework that can be used by an edge server for selecting patches

for super-resolution when serving multiple users.

3 OVERVIEW OF EVASR

Figure 1 shows an overview of our proposed EVASR system that

performs edge-based video delivery with salience-aware super-

resolution. It has three main components: the video service provider

that stores and streams videos to the users, the edge server that

is capable of performing deep-learning-based super-resolution to

enhance the quality of videos, and the clients who request and

watch videos in high resolution.



EVASR: Edge-Based Video Delivery with Salience-Aware Super-Resolution MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada

Edge Server

HR Videos

Downsampling

Saliency Detection

SR Model Training

Saliency Weight

SR_PSNR

Video Service Provider

SR Model

SVQO

Weight

SR_PSNR

BI_PSNR

CUDA Memory

Users

Priority

 FFmpeg

SR Patch 
Array

Upscaled Videos

Request HR Video

Return HR Video

Models

LR Videos

BI_PSNR

LR Videos

BI Patch
Array

Client 4

Client 3

Client 2

Client 1

Figure 1: Overview of our proposed EVASR system.

In this work, we assume that the available downlink bandwidth

from the video service provider is limited and thus may not support

the transmission of high quality video to all users. On the other

hand, the network bandwidth available between the edge server

and the clients is very high and can even support streaming videos

that are compressed in a lossless manner (e.g., via lossless H.264).

This gives us the opportunity to exploit deep-learning-based super-

resolution for upscaling the video and enhancing the video quality

by leveraging computation resources available at the edge server.

3.1 Edge Server

The edge server acts as a relay between the video service provider

and the streaming client. It receives the low resolution video content

from the video server. It then performs upscaling and video quality

enhancements to increase the resolution and the visual quality of

the received video. Finally, it sends the high resolution video to the

client.

An edge server needs to serve multiple clients who may be

watching different videos. However, given that only limited amount

of computation resources are available at the edge server, it is

challenging for the edge server to enhance the video quality for all

users. To address this problem, we propose a patch-based scheme

where deep-learning-based super-resolution is only performed for

a selected set of patches in a video frame, while the remaining

patches are upscaled using traditional, non-deep-learning-based

approaches, such as bicubic interpolation.

The edge server has two main components: a saliency visual

quality optimizer (SVQO) that decides the set of patches to perform

super-resolution and a video frame processing tool that performs

the upscaling (super-resolution or bicubic interpolation).

3.1.1 Saliency visual quality optimizer. The saliency visual quality

optimizer (SVQO) formulates the patch selection problem as an

optimization problem with the objective of maximizing the saliency

visual quality for all users served by the edge server. We design the

SVQO optimizer based on the following principles:

• Every edge server has its computational constraints, whichmeans

it can only serve a limited number of users at a time.

• Users with higher priority can obtain more computation re-

sources and thus better video quality enhancements.

• Human eyes are more sensitive to regions on the video frame

with higher saliency score. It is thus more important to improve

the quality of the highly-salient areas on the video frame.

• Generally, upscaling via deep-learning-based super-resolution

results in better video quality than upscaling via bicubic interpo-

lation.

• However, applying super-resolution consumes more computa-

tional resources than applying bicubic interpolation.

• It is not necessary to apply deep-learning-based super-resolution

to all patches in a frame.

Patches on a video frame have different saliency scores. With the

recent success of deep learning, video salient object detection [21]

can be used to extract the most visually distinctive objects in video

sequences. Today, many existing models can produce high-quality

spatial and temporal saliency information. Taking this into account,

we design a new metric called the łsaliency visual qualityž that

places more emphasis (i.e., weights) on the visual quality of areas on

the frame where human eyes are more sensitive to. The goal of our

SVQO optimizer is to maximize the saliency visual quality subject

to a number of constraints. To do so, it must also be aware of how

much improvement can be obtained by performing super-resolution

vs. bicubic interpolation (e.g., super-resolution PSNR (SR_PSNR) vs.

bicubic PSNR (BI_PSNR)). Such information is provided as input to

the optimizer to select the best set of patches for super-resolution.

We describe details of the SVQO optimizer in Section 4.

3.1.2 Video Upscaling and Transmission. The SVQOoptimizer solves

for a binary array SR_Patch that encodes which patches are to apply

super-resolution. We then need a dedicated process to perform the

video upscaling operation.

The process decodes the received low resolution video, performs

deep-learning-based super-resolution on selected patches and bicu-

bic interpolation for the remaining patches. Finally, it transmits

the upscaled high resolution video to the requested clients. The

video scaling component is implemented as a new video filter in

the FFmpeg [3]. We describe the implementation in Section 5.

3.2 Video Service Provider

The video service provider stores high resolution videos (HR videos).

It transcodes them into lower resolution videos (LR videos) for

bandwidth-efficient downlink transmission and trains deep learning

models for upscaling LR videos to HR videos. Since the SVQO

optimizer at the edge server requires additional information about

the video to formulate the optimization problem, in addition to the

low resolution video, it also transmits video saliency information

and visual quality results (e.g., SR_PSNR and BI_PSNR) to the edge
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Table 1: Variables used in problem formulation.

𝐶 total number of users that request at the same time

𝑃𝑖 priority of user 𝑖

𝑆𝑉𝑄𝑖,𝑗 saliency visual quality for user 𝑖 watching video 𝑗

𝛼 penalty parameter, details are described in Section 4.2.2

𝑇𝑃 total number of patches that will apply super-resolution

among all users

𝑇𝑃𝐹 total number of patches that will apply super-resolution

in a frame

𝐾𝑖 CUDA memory cost for user 𝑖

𝑀𝐾 maximum CUDA memory available at the edge server

𝑀𝐶 maximum number of users that can be supported at the

same time while meeting real-time requirements

𝑀𝑃 maximum number of patches overall that can apply super-

resolution at the same time to maintain real-time super-

resolution

𝑀𝑃𝐹 maximum number of patches that can apply super-

resolution in a frame

𝐹 𝑗 total number of frames in video 𝑗

𝑆_𝑃𝑆𝑁𝑅𝑘 saliency PSNR of frame 𝑘

𝑊𝑝 saliency weight for patch 𝑝 in a frame

𝑆𝑅_𝑃𝑎𝑡𝑐ℎ a binary array where 1s indicate patches to apply super-

resolution and 0s indicate patches to apply bicubic inter-

polation for upscaling

server. The video saliency information can be computed offline,

and the visual quality results can be obtained during deep-learning

model training.

3.3 Clients

The edge server performs video upscaling to enhance the visual

resolution and video quality. It then sends the high resolution video

to the client, preferably in a lossless manner given that the available

bandwidth between the edge and the client is very high.

Each client can have a different priority associated with them. A

client with higher priority can potentially use more computational

resources available at the edge server for super-resolution, thus

receiving upscaled videos in better quality.

4 SALIENCY VISUAL QUALITY OPTIMIZER

In this section, we outline the design of the core component of

EVASR, the saliency visual quality optimizer (SVQO). SVQO aims

to find an optimal set of frame patches to perform deep-learning-

based super-resolution for video quality enhancement, given the

constraint of real-time super-resolution performance and the lim-

ited computation resources available. The objective is to maximize

the saliency visual quality of video content displayed to the users.

Next, we first formulate our saliency visual quality optimization

problem. We then describe the saliency video quality metric and

saliency weight used in the problem formulation. Finally, we discuss

other parameters in our optimization problem. We describe the

variables used in our optimization problem formulation in Table 1.

4.1 Problem Formulation

Our goal to find the optimal set of patches for performing super-

resolution is encoded in a binary array 𝑆𝑅_𝑃𝑎𝑡𝑐ℎ. In this array, 1s

represent patches that apply deep-learning-based super-resolution

for upscaling, and 0s in the array indicate patches that apply bicubic

interpolation for upscaling. 𝑆𝑅_𝑃𝑎𝑡𝑐ℎ includes results for all users

that are served by the edge server and all the videos these users are

watching.

Given that upscaling via deep-learning-based super-resolution

and bicubic interpolation will lead to different visual quality results,

we can use the array 𝑆𝑅_𝑃𝑎𝑡𝑐ℎ to calculate the visual quality of

the full upscaled frame (with some patches upscaled via super-

resolution and others via bicubic). Considering that human eyes

are more sensitive to the highly salient areas of a frame (e.g., areas

with large amounts of motion), we assign different salient-based

weights,𝑊𝑝 (Equation 5) to different patches and obtain a salient

visual quality metric, 𝑆𝑉𝑄 (Equation 2). Equation 1 describes our

objective to maximize the salient visual quality under resource and

timing constraints:

maximize:
1

𝐶

𝐶
∑︁

𝑖=1

𝑃𝑖 × 𝑆𝑉𝑄𝑖, 𝑗 − 𝛼 (1 −
1

𝐶
)𝑇𝑃 (1)

subject to:

𝐶
∑︁

𝑖=1

𝐾𝑖 ≤ 𝑀𝐾

𝐶 ≤ 𝑀𝐶

𝑇𝑃 ≤ 𝑀𝑃

𝑇𝑃𝐹 ≤ 𝑀𝑃𝐹

In this formulation, 𝑖 denotes the index of a user, and 𝑗 denotes

the index of video 𝑗 that the user is watching. 𝛼 represents a penalty

term that relates to the number of users 𝐶 , and we will discuss 𝛼

in more detail in Section 4.2.2. The number of users 𝐶 should not

exceed𝑀𝐶 , a constraint due to CUDA memory limit and the real-

time inference requirement.𝑀𝑃 is the maximum patches that can

apply super-resolution at the same time while maintaining real-

time super-resolution for all users at the edge server. We can obtain

values of these constraints via a data-driven method.

4.1.1 Saliency Visual Quality. 𝑆𝑉𝑄𝑖, 𝑗 in Equation 1 represents the

saliency visual quality of user 𝑖 while watching video 𝑗 . We define

𝑆𝑉𝑄𝑖 𝑗 as the average saliency PSNR of all frames in video 𝑗 :

𝑆𝑉𝑄𝑖, 𝑗 =
1

𝐹 𝑗

𝐹 𝑗
∑︁

𝑘=1

𝑆_𝑃𝑆𝑁𝑅𝑘 (2)

𝐹 𝑗 is the total number of frames in video 𝑗 , and 𝑆_𝑃𝑆𝑁𝑅𝑘 stands

for the saliency PSNR (defined in Equation 3) for frame 𝑘 in video

𝑗 . We represent the saliency PSNR of a frame as:

𝑆_𝑃𝑆𝑁𝑅 =

patch_num
∑︁

𝑝=1

𝑊𝑝 ×

(

𝑆𝑅_𝑃𝑎𝑡𝑐ℎ𝑝 × 𝑆𝑅_𝑃𝑆𝑁𝑅𝑝 + (1 − 𝑆𝑅_𝑃𝑎𝑡𝑐ℎ𝑝 ) × 𝐵𝐼_𝑃𝑆𝑁𝑅𝑝

)

(3)

𝑆𝑅_𝑃𝑎𝑡𝑐ℎ𝑝 ∈ {0, 1}

Here, patch_num is the total number of tiled patches in a frame.

For example, if we tile a frame into 6x6 patches, then the number

of 36.𝑊𝑝 stands for saliency weight for patch 𝑝 in the frame. The

saliency weight is obtained based on the saliency score. 𝑆𝑅_𝑃𝑎𝑡𝑐ℎ

is a binary array we aim to solve for the optimization problem. The

length of array 𝑆𝑅_𝑃𝑎𝑡𝑐ℎ is the same as the number of patches in

the frame. 𝑆𝑅_𝑃𝑆𝑁𝑅𝑝 is the PSNR result for patch 𝑝 obtained by
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applying super-resolution, and 𝐵𝐼_𝑃𝑆𝑁𝑅𝑝 is the PSNR result for

patch 𝑝 obtained by applying bicubic interpolation for upscaling.

4.1.2 Saliency Weight. The saliency weight𝑊𝑝 of patch 𝑝 is com-

puted based on the saliency score obtained from saliency detection

(e.g., [8]). We first normalize the saliency score for each patch. Here,

we use min-max normalization:

𝑥 ′𝑝 =

𝑥𝑝 −𝑚𝑖𝑛

𝑚𝑎𝑥 −𝑚𝑖𝑛
, 𝑝 ∈ [1, patch_num] (4)

𝑥𝑝 denotes the original saliency score for patch 𝑝 , computed

by summing up all the saliency scores for each pixel in patch 𝑝 .

Based on the normalized saliency score 𝑥 ′𝑝 , we apply the softmax

function to convert the normalized saliency score for each patch

into a probability distribution to represent the weight for each patch.

We assign higher weights to patches with high saliency scores since

human eyes are more attracted to contents in these areas.

𝑊𝑝 =

𝑒𝑥
′
𝑝

∑patch_num
𝑝=1 𝑒𝑥

′
𝑝

, 𝑝 ∈ [1, patch_num] (5)

patch_num
∑︁

𝑝=1

𝑊𝑝 = 1

4.2 Other Details

4.2.1 User Priority. In our problem formulation in Equation 1, we

assign a different priority 𝑃𝑖 to each user. When multiple users

request video quality enhancement at the same time, users with

higher priority can get more resources at the edge server, and obtain

better video quality improvement, e.g., with more patches upscaled

via super-resolution as opposed to bicubic interpolation.

In our optimization problem, we consider the general scenario

where different users request to stream different videos. If more

than one users, e.g., 𝑈 = {𝑢𝑖1 , 𝑢𝑖2 , ..., 𝑢𝑖𝑁 }, request to watch a same

video, then the enhanced video can be used by all 𝑛 users. For

example, each of the 𝑁 users has a corresponding priority 𝑃𝑖 𝑗 , 𝑗 ∈

1, 2, ..., 𝑁 . When these multiple users request a same video at the

same time, we can simply consider them as one request by the

user with highest priority. That is, 𝑃𝑖𝑚𝑎𝑥 = max{𝑃𝑖1 , 𝑃𝑖2 , ..., 𝑃𝑖𝑁 }.

To facilitate delivery of enhanced frames to multiple users, the edge

may need to temporarily cache these enhanced frames. However,

since these users are requesting the same video at the same time,

the enhanced frames do not need to be cached for too long.

4.2.2 Penalty Term and 𝛼 . In our optimization objective shown

in Equation 1, 𝛼 (1 − 1

𝐶 ) is a penalty term for the total number of

patches that apply super-resolution, 𝑇𝑃 . The effect of this term

is related to the number of users 𝐶 . When there is only 1 user,

𝛼 (1 − 1

𝐶 ) becomes 0, and there is no penalty for increasing the

number of patches to apply super-resolution. The edge server can

apply super-resolution on as many patches as possible to achieve

the best saliency video quality while subject to the constraints.

However, as the number of users 𝐶 increases, and since super-

resolution requires more computational resources than bicubic, the

coefficient term for penalty (1−1/𝐶) will increase to force the edge

server to more carefully select patches to apply super-resolution.

For example, consider a patch that can get 0.1 increase in saliency

video quality by applying super-resolution. When 𝐶 is small, the

edge server may decide to apply super-resolution for this patch.

However, when𝐶 gets larger, the edge side may be inclined to apply

bicubic due to the larger penalty term for adding a patch to apply

super-resolution.

The 𝛼 parameter is used to balance the performance and com-

putational resources. Larger 𝛼 means that the edge side prefers to

consider the resource constraint when assigning which patch to

apply super-resolution. In this case, the increased total number of

super-resolution patches (i.e., 𝑇𝑃 ) would be more sensitive to the

objective. Meanwhile, smaller 𝛼 tells the edge side to emphasize on

the improvement of the saliency video quality. In this case, the edge

side may prefer to add more patches to improve the performance.

For example, for a small 𝛼 , even with 0.1 saliency visual quality

improvement, the optimizer may choose to apply super-resolution.

However, for larger 𝛼 , the optimizer may choose to apply bicubic in-

terpolation to save computational resources when the improvement

is only 0.1. With larger improvements, e.g., 0.5, the optimizer would

still assign this patch to apply super-resolution instead of bicubic.

Thus, for edge devices that have less computation resources, we

can set 𝛼 to a larger value compared to when the edge devices are

more powerful.

5 IMPLEMENTATION

We use the FFmpeg [3] framework for performing video upscaling

at the edge server. For each video that is being watched by a user,

we create one FFmpeg process to be responsible for performing

deep-learning-based super-resolution for patches selected in the

𝑆𝑅_𝑃𝑎𝑡𝑐ℎ array and bicubic interpolation for the remaining patches.

Note that since different super-resolution models may be trained

for each video, we are unable to use one FFmpeg process for all

videos. To perform per-frame super-resolution, we adapt the FFm-

pegSR framework [18] we proposed in a prior work. FFmpegSR is

implemented as an FFmpeg filter. It obtains low-resolution video

frames from the video decoder in Y/U/V channels as input, pro-

cesses/upscales them, and forwards the output frame into the next

step in the FFmpeg pipeline. We adapt FFmpegSR to upscale patches

in each video frame using deep-learning-based super-resolution

or bicubic interpolation based on the decision made by the SVQO

optimizer.

FFmpegSR integrates Pytorch with FFmpeg using the PyTorch

C++ API ś LibTorch [2]. In this work, we use the ESPCN model

for super-resolution in EVASR. We choose this model for its small

model size, which is critical for real-time super-resolution, and

its good visual quality performance. The trained ESPCN model is

traced to the serialized torchscript model first. We then use CMake

and LibTorch to generate a shared library .so file that can load and

execute the torchscript model.

Unlike many super-resolution solutions that work in the R/G/B

domain, FFmpegSR performs super-resolution/upscaling in the

Y/U/V domain directly. This saves the extra computation needed

for color format transformation. Given a frame, we perform bicubic

interpolation using the libswscale library, available in FFmpeg.

Patches that are selected to perform super-resolution are further

sent to the model in a batch. That is, if 𝑛 patches are selected in

a frame, the batch size of super-resolution inference is 𝑛. Figure 2

illustrates the operation of the video filter. In this figure, out of 36
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Low Resolution

High Resolution

Figure 2: This figure shows an example frame with 11 out

of 36 patches (highlighted in the figure) performing super-

resolution, while the remaining 25 patches are upscaled us-

ing bicubic interpolation. This example frame is from the

łRaceNightž video in the UVG dataset [20].

patches, only 11 patches (highlighted in the figure) are selected by

SVQO to perform deep-learning-based super-resolution. In the FFm-

peg video filter, we send these 11 patches to the super-resolution

model as one batch with the batch size of 11. For patches that are

upscaled by the super-resolution model, we use them to replace

corresponding patches in the bicubic-interpolated full frame. In this

way, regardless of how patches are upscaled, all patches have the

same width and height and are composited onto a high resolution

frame output by the video filter.

We calculate the saliency weight of each patch in each video

based on saliency score obtained via a state-of-art real-time video

saliency detection model, STVS [8]. To setup the optimization prob-

lem, we also need information about the PSNR results of patch

upscaled via bicubic interpolation and deep-learning-based super-

resolution, respectively (i.e., 𝐵𝐼_𝑃𝑆𝑁𝑅 and 𝑆𝑅_𝑃𝑆𝑁𝑅 in Equation

3). To do so, we use the FFmpeg filter we implemented to generate

upsampled videos in two ways: via full-frame super-resolution and

via full-frame bicubic interpolation, respectively. For each video, we

tile each frame into 6x6 patches, 36 patches in total. For each patch

(obtained via bicubic interpolation or super-resolution), we calcu-

late its PSNR value compared to the ground-truth high resolution

video. The dimensions of 𝐵𝐼_𝑃𝑆𝑁𝑅 and 𝑆𝑅_𝑃𝑆𝑁𝑅 are exactly the

same as our saliency weight, which is 𝐹𝑟𝑎𝑚𝑒_𝑛𝑢𝑚 × 𝑃𝑎𝑡𝑐ℎ_𝑛𝑢𝑚.

To solve the formulated optimization problem, we use the Gurobi

Optimizer [5]. We define the decision variables, the linear objective

function, the linear constraints, and use the Linear Programming

solver in Gurobi to obtain results of the decision variable, i.e., the

binary array 𝑆𝑅_𝑃𝑎𝑡𝑐ℎ𝑝 . Given that an edge server can only per-

form super-resolution for a limited number of users, the scale of

the problem is relatively small, which makes it possible for the

optimizer to solve the problem within a very small amount of time.

For example, our empirical results (as reported by Gurobi) show

that the aggregated running time of Gurobi is 40 ms when solving

the optimization problem for 12 seconds of videos and 290 ms when

solving the problem for 5 minutes of videos.

6 EVALUATION

6.1 Dataset

For evaluation, we used videos from the UVG dataset [20]. This

dataset includes 16 test video sequences of various characteristics

in 4K (3840x2160) resolution. These videos are captured at 50 and

120 fps. The length of these videos are 5 seconds and 12 seconds

long. In our experiments, we used videos that are 50 fps and 12

seconds long. In addition, we reduced the frame rate of these videos

from 50 fps to 25 fps as a frame rate between 24 fps and 30 fps are

more common for streaming videos [6]. Among the 7 videos in the

dataset that are 12 seconds long, we selected 4 most representative

videos in scenes with different amount of motions to evaluate our

proposed work: RaceNight, FlowerKids, RiverBank, Twilight.

In addition, we also selected 4 videos from YouTube with longer

duration. We select four 4K videos among four popular categories:

Haul, How-to, Vlog, and Challenge. We refer to this as the YouTube

dataset. We use the first 5 minutes of these 4 videos for evaluation.

We consider two different scaling factors in our study: x2 and x4.

We generate low resolution videos (LR videos) by downsampling

the videos in the dataset using bicubic downsampling to the low

resolution of 960x540 (for x2 scaling) and 480x270 (for x4 scaling).

We also create the high resolution łgroundtruthž video in 1920x1080

resolution and use it as the reference for PSNR and visual quality

comparisons.

6.2 Comparison Among TensorFlow-Based SR,
Bicubic, and EVASR

The FFmpeg repository includes a naive implementation of a super-

resolution video filter that uses TensorFlow (tf_SR) [4]. It supports

two models: SRCNN [10] and ESPCN [22]. However, tf_SR can only

perform full-frame super-resolution as it cannot support patch-

based super-resolution like ours.

We compare our proposed system EVASR with tf_SR and bicu-

bic interpolation. Since tf_SR can only perform full-frame super-

resolution, for fair comparison, we only compare full-frame up-

scaling results. The upscale factor is x2. The input low resolution

video is 960x540, and the output high resolution video is 1920x1080.

Both tf_SR and our EVASR use the ESPCN [22] model for super-

resolution. That is, the structure and number of parameters of the

models are the same. For tf_SR, we directly used the TensorFlow

ESPCN model used by FFmpeg. To show the potential of model

fine-tuning, we recorded the parameters in the TensorFlow ESPCN

model and used it to initialize the PyTorch model for EVASR. We

took a further step to train the PyTorch model using each video as

training data. This allows us to obtain better PSNR results with the

PyTorch model used in EVASR. Note here that the purpose of this

comparison is to show the potential of model fine-tuning and the

visual quality improvements (e.g., PSNR) that can be achieved over

bicubic interpolation. The visual quality results of EVASR should

not be compared with tf_SR.

The results are shown in Table 2. In this table, the column łspeedž

represents the overall upscaling speed recorded by the FFmpeg

pipeline against the video playback speed (e.g., 25 fps). The larger

the value, the faster the speed is. A speed faster than 1x indicates

real-time performance. The łspeedž results throughout this paper

are obtained on a machine using a GTX 3080 Ti GPU. łPSNRž rep-

resents the average of raw PSNR results obtained of each patch of

each frame, and łS_PSNRž represents the saliency PSNR results.

We can see that the speed of EVASR is faster compared to tf_SR.

Bicubic is the fastest upscaling method among the three. However,

its visual quality performance is poor. Its PSNR and S_PSNR results

always under-perform the deep-learing-based super-resolution
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Table 2: Comparison of performances among TensorFlow-

based SR provided by FFmpeg (tf_SR), bicubic interpolation,

and EVASR (ours). PSNR and S_PSNR results are in dB. Note

that the results in this table are for full frame upscaling only.

video upscaling speed PSNR S_PSNR

RaceNight tf_SR [4] 3.30x 43.05 39.94

Bicubic 11.4x 43.08 39.62

EVASR 3.76x 44.33 42.16

FlowerKids tf_SR [4] 3.28x 46.52 43.60

Bicubic 12.3x 46.17 43.38

EVASR 3.90x 45.19 44.83

RiverBank tf_SR [4] 3.31x 38.04 36.14

Bicubic 11.7x 37.93 36.17

EVASR 3.73x 39.35 36.94

Twilight tf_SR [4] 3.30x 44.28 44.73

Bicubic 14.1x 43.97 44.40

EVASR 3.87x 45.49 45.53

Table 3: Impact of upscale factor. Note that the CUDA mem-

ory and speed results in this table are obtained using full-

frame (i.e., all patches) super-resolution.

scale parameters size CUDA memory speed

x2 21,284 102KB 2491MB 3.76x

x4 24,752 115KB 2275MB 5.57x

Table 4: Visual quality results of full-frame x2 and x4 super-

resolution via EVASR. PSNR and S_PSNR results are in dB.

Video x2_PSNR x2_S_PSNR x4_PSNR x4_S_PSNR

RaceNight 44.33 42.16 40.12 35.90

FlowerKids 45.19 44.83 39.92 39.92

RiverBank 39.35 36.94 36.01 33.83

Twilight 45.49 45.53 41.39 41.38

methods. EVASR performs the best for all videos in both PSNR

and S_PSNR metrics, with the exception of the PSNR metric of the

łFlowerkidsž video. After inspecting the video, we notice that there

is an area in the video that has very high luminance, close to white.

Our model cannot perform very well compared to the other two in

this area. Nonetheless, our fine-tuned model outperforms others in

saliency PSNR among all 4 videos.

6.3 Impact of Upscaling Factor

We considered two upscaling setups: x2 upscaling from 960x540

to 1920x1080 and x4 upscaling from 480x270 to 1920x1080. Table

3 compares the model size, CUDA memory, and super-resolution

speed when using the ESPCNmodel with these two different scaling

factors. The x2 model has fewer parameters and thus has slightly

smaller model size. Since the x4 model works with 480x270 input

videos, its CUDA memory usage is smaller compared to the x2

model. Its speed is also faster than the x2 model.

The smaller input video resolution of x4 upscaling, however,

has a significant impact on the visual quality. Taking the video

łRaceNightž as an example, we compare the PSNR and S_PSNR

results in Table 4. We find that x4 upscaling results in 4 dB lower

PSNR compared to x2 upscaling.We also note here that even though

(a) Batch size vs. CUDA memory (b) Batch size vs. Speed

Figure 3: Impact of batch size on CUDA memory and speed

the visual quality performance of x4 super-resolution is not as good

as x2, it is still better compared to x4 bicubic interpolation.

This analysis indicates that it is possible to use x4 scaling to

further save the bandwidth (e.g., downloading video in the lower

480x270 resolution) and the computation resource (e.g., less CUDA

memory and faster super-resolution inference speed) for users who

might have lower priority.

6.4 Impact of Batch Size

Wedesigned experiments to find the relationship between batch size

and the inference time as well as CUDA memory consumption. The

results are obtained on the łRaceNightž video with the batch size

ranging from 1 to 36. Figure 3(a) shows the relationship between

CUDA memory consumption and the batch size. It is not surpris-

ing that as the batch size increases (i.e., perform super-resolution

for more patches in the frame), the CUDA memory consumption

increases. Figure 3(b) shows that the batch size can substantially

impact the upscaling speed in the FFmpeg pipeline. Note that here

we are showing the speed when the edge server is serving only one

client. As the batch size increases from 1 to 36, the speed decreases

by half from 7.35x to 3.65x.

6.5 Analysis of the Optimizer

In this subsection, we report results from experiments to demon-

strate the effectiveness of the saliency video quality optimizer

(SVQO). Here, we consider the scenario where 𝐶 = 4 users are

requesting 4 videos of different characteristics in our experiment.

The frame number for each video is 𝐹 = 300. In our scenario, the

maximum number of patches that our device can support per frame

𝑀𝑃𝐹 with 𝐶 is 36. Since we use 6x6 patches, performing super-

resolution for 36 patches is the same as full-frame super-resolution.

The maximum number of patches that can apply super-resolution is

𝐶 × 𝐹 ×𝑀𝑃𝐹 = 43, 200. In an ideal situation where there is no com-

putation or real-time constraints, we can perform super-resolution

on the maximum number of patches.

6.5.1 Impact of Parameter 𝛼 . We conduct experiments to show the

impact of parameter 𝛼 . Here, the max_patch𝑀𝑃 is set to be 43,200,

and the number of users 𝐶 is 4 with 4 distinct video contents. We

set 𝛼 from 1𝑒 − 1 to 1𝑒 − 10 and compare the average saliency PSNR

(S_PSNR), saliency video quality (SVQ), and the objective of our

optimization problem formulated in Equation 1.

The results are shown in Table 5. When 𝛼 is large, the penalty

may be too large, causing no patches to be assigned to apply super-

resolution. As 𝛼 decreases, the total number of super-resolution
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Table 5: Impact of parameter 𝛼 on the visual quality performance and the total number of patches to apply super-resolution.

Value of 𝛼 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8 1e-9 1e-10

SVQ 40.8929 40.8929 41.0191 42.2007 42.3848 42.4014 42.4067 42.4068 42.4068 42.4068

Objective (Equation 1) 40.8929 40.8929 40.9299 41.7536 42.2986 42.3876 42.4042 42.4066 42.4068 42.4068

Total number of super-resolution patches (𝑇𝑃 ) 0 0 119 5,962 11,489 18,398 33,865 36,265 37,606 37,895

(a) Max Number of Patches (𝑀𝑃 ) vs. SVQ (b) Max Number of Patches (𝑀𝑃 ) vs. Total
Number of Patches (𝑇𝑃 )

Figure 4: Impact of𝑀𝑃 on SVQ and 𝑇𝑃

patches increases. As a result, the saliency visual quality improves.

Specifically, we observe that when 𝛼 decreases from 1𝑒 − 4 to 1𝑒 −

5, the saliency visual quality greatly improves with a moderate

increase of total patches𝑇𝑃 . However, when 𝛼 decreases from 1𝑒−6

to 1𝑒 − 7, even with a very large increase of 𝑇𝑃 , the improvement

of saliency visual quality is very limited, e.g., 0.0055. As 𝛼 further

decreases, even a very tiny increase in visual quality performance

requires a significant amount of computational resources, which

can be ineffective. Thus, we conclude that 𝛼 = 1𝑒 − 5 achieves the

best efficiency with performance and computational resources. We

also consider 𝛼 = 1𝑒 − 6 to compare the different levels of trade-off

between performance and computational resource usage.

6.5.2 Impact of Max Number of Patches (𝑀𝑃 ). We know from the

previous discussion that 𝛼 has a significant impact on the total

number of patches to apply super-resolution, 𝑇𝑃 , which affects the

performance. To eliminate the impact of 𝛼 as we investigate the

impact of the 𝑀𝑃 parameter, we set 𝛼 to 1𝑒 − 10. Since 𝛼 is very

small, nearly zero, the optimization objective in Equation 1 is almost

the same as saliency video quality (SVQ). We thus only show the

impact of𝑀𝑃 on SVQ in Figure 4(a). When𝑀𝑃 increases from 0 to

around 10,000, the SVQ result improves substantially from 40.9 to

over 42.3. However, the improvement is very small beyond 10,000.

The impact of𝑀𝑃 on𝑇𝑃 is shown in Figure4(b). While𝑇𝑃 typically

grows larger with𝑀𝑃 , it stops increasing once reaching a threshold.

This indicates that even with enough computational resources,

there is no need to apply super-resolution to some patches. These

patches can obtain good enough visual quality results via bicubic

interpolation directly.

6.5.3 Impact of User Priority. To investigate the impact of user

priority 𝑃𝑖 , we set 𝛼 = 1𝑒 − 5 and set the maximum number of

patches 𝑀𝑃 to 11,489. We chose this value because 11,489 is the

total number of patches𝑇𝑃 calculated by the SVQO optimizer when

𝛼 = 1𝑒 − 5 and all users are set to the same priority (Table 5).

We consider five combinations of priority levels: [1,1,1,1], [1,1,1,3],

[1,1,1,5], [1,1,5,5], and [1,5,5,5]. Table 6 shows the corresponding

saliency video quality for each video, and Table 7 shows the total

number of patches in each video to apply super-resolution. Note

Table 6: Impact of user priority on saliency visual quality

(SVQ).

Priority RaceNight FlowerKids RiverBank Twilight Avg.

[1, 1, 1, 1] 42.1499 44.9532 36.8971 45.5390 42.3848

[1, 1, 1, 3] 42.1475 44.9518 36.8920 45.5443 42.3839

[1, 1, 1, 5] 42.1453 44.9507 36.8882 45.5460 42.3826

[1, 1, 5, 5] 42.1238 44.9347 36.9109 45.5427 42.3780

[1, 5, 5, 5] 42.1149 44.9553 36.9060 45.5419 42.3795

Table 7: Impact of user priority on the total number of

patches 𝑇𝑃 to apply super-resolution.

Priority RaceNight FlowerKids RiverBank Twilight Total

[1, 1, 1, 1] 3,486 3,594 2,398 2,011 11,489

[1, 1, 1, 3] 3,414 3,553 2,243 2,279 11,489

[1, 1, 1, 5] 3,358 3,526 2,148 2,457 11,489

[1, 1, 5, 5] 3,013 3,278 3,025 2,173 11,489

[1, 5, 5, 5] 2,918 3,678 2,763 2,130 11,489

Table 8: Impact of user priority on VMAF [1].

Priority RaceNight FlowerKids RiverBank Twilight Avg.

[1, 1, 1, 1] 99.91 97.88 78.94 88.15 91.22

[1, 1, 1, 3] 99.91 97.85 78.85 88.46 91.27

[1, 1, 1, 5] 99.91 97.83 78.81 88.81 91.34

[1, 1, 5, 5] 99.91 97.68 80.22 88.33 91.54

[1, 5, 5, 5] 99.91 97.94 79.49 88.27 91.40

that since we consider each user watching a different video, each

priority value not only corresponds to a user priority, but also

corresponds to the video that the user watches.

Table 6 and Table 7 show that with higher priority, a user can

get more super-resolution patches and thus obtain higher saliency

video quality. For example, with priority levels set to [1,1,1,3], user

#4 has higher priority than the remaining users. Comparing the

first two rows in Table 7, we can see that user #4 watching the video

łTwilightž can use more resources at the edge server for performing

super-resolution for 268 more patches and thus obtain better SVQ

results. Moreover, users with lower priority can still obtain good

saliency video quality, despite a very slight decrease due to fewer

super-resolution patches.

In addition to SVQ results, we also use another visual quality

metric, video multi-method assessment fusion (VMAF [1]), an ob-

jective video quality metric developed by Netflix. We obtain the

VMAF results as follows: we use EVASR for performing salience-

aware super-resolution, that is, super-resolution for a set of patches

selected by the SVQ optimizer and bicubic interpolation for the

remaining patches. We save the output video in a lossless manner

and compare it with the groundtruth high resolution video using

the VMAF filter provided by FFmpeg. The results are shown in

Table 8. We find that the VMAF results are consistent with the SVQ

results.
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(b) FlowerKids
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(c) Twilight
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(d) RiverBank

Figure 5: This figure shows the distribution of per-frame saliency PSNR of all four videos. In this figure, łOptimizedž represents

the results of our EVASR what uses the SVQO optimizer for selecting a set of patches for super-resolution.

6.6 Quantitative Comparison

We evaluate EVASR using two different video sets: 4 videos in the

UVG dataset, each 12 seconds long, and 4 videos in the YouTube

dataset, each 5 minutes long. For the UVG dataset, we present

results on two different 𝛼 values: 1𝑒 − 5 and 1𝑒 − 6. For the YouTube

dataset, we present results when 𝛼 is set to 1𝑒 − 6.

6.6.1 Per-frame Saliency PSNR. We compare the per-frame saliency

PSNR results obtained from three methods: bicubic interpolation,

full-frame deep-learning-based super-resolution, and the results

from our EVASR using the saliency video quality optimizer, SVQO.

In these experiments, all users are set to the same priority. We set

𝛼 = 1𝑒−5, and the maximum number of patches𝑀𝑃 is set to 43,200.

Figure 5 shows the distribution of per-frame saliency PSNR of

all four videos in the UVG dataset. For each video, we compute

the saliency PSNR for each frame. According to Table 5, when

𝛼 = 1𝑒 − 5, a total of 11,489 out of 43,200 patches are selected to

perform super-resolution. As we can see, with only ≈ 1/4 patches

applying super-resolution, our EVASR is able to reach the best vi-

sual quality performance. Across all four videos, our optimized

results are significantly better than bicubic interpolation. For ex-

ample, for łRaceNightž, the median saliency PSNR value is 39.82

dB, 42.36 dB, and 42.38 dB for bicubic interpolation, our EVASR,

and full-frame super-resolution results, respectively. Our results

are very close to performing full-frame super-resolution. For łFlow-

erKidsž, our optimized results can even outperform the full-frame

super-resolution results. This is because some areas in the video

are overexposed, and several patches in the background are white.

The bicubic PSNR value in these areas can reach over 100 dB. Our

SVQO optimizer assigns these patches to perform bicubic inter-

polation, which achieves maximum visual quality and also saves

computational resources.

6.6.2 Saliency VideoQuality Comparison. Based on saliency PSNR

results, we can obtain saliency visual quality (SVQ) results for each

video in the UVG dataset in Table 9. We can see that our optimized

saliency video quality outperforms bicubic interpolation and even

full-frame super-resolution on average saliency video quality. In

this table, we further compare EVASRwith two baseline approaches:

Top-9 and Top-15. Top-9 represents performing super-resolution

on a fixed number of 9 patches per frame with the highest saliency

score. Given that when𝛼 = 1𝑒−5, EVASR performs super-resolution

on 11,489 patches, this roughly translates to 9 patches per frame.

Table 9: Saliency video quality (SVQ) comparison among 4

UVG videos.

SVQ RaceNight FlowerKids RiverBank Twilight Avg

Bicubic 43.3757 36.1723 39.6214 44.4020 40.8929

Full-frame SR 44.8347 36.9358 42.1632 45.5302 42.3660

Top-9 43.9910 36.3116 40.1280 45.4974 41.4820

EVASR (1e-5) 44.9532 36.8971 42.1499 45.5390 42.3848

Top-15 44.2602 36.5261 40.3651 45.5181 41.6674

EVASR (1e-6) 44.9580 36.9316 42.1606 45.5553 42.4014

Table 10: Saliency video quality (SVQ) comparison among 4

YouTube videos.

SVQ Haul How-to Vlog Challenge Avg

Bicubic 42.31 39.76 38.11 40.89 40.2675

Full-frame SR 44.33 39.74 38.09 40.61 40.6925

EVASR (1e-6) 49.95 42.23 41.23 46.58 44.9975

When 𝛼 = 1𝑒 − 6, EVASR performs super-resolution for 15 patches

per frame on average, we thus compare EVASR (1e-6) with the

Top-15 approach. Results in this table show that Top-9 and Top-15

do not perform as well as our EVASR approach. This shows that

our SVQO optimizer is effective.

We also compute the saliency visual quality (SVQ) for the 4 longer

(5 minutes) YouTube videos. The results are shown in Table 10. We

note here that for these 4 videos in the YouTube dataset, we did not

fine-tune the deep-learning-based super-resolution model via re-

training. Instead, we directly used the parameters in the TensorFlow

ESPCN model provided by FFmpeg tf_SR. The results show that

even when using a general model, our SVQO optimizer can still

achieve the best performance without large-scale pre-training.

6.6.3 VMAF results. Table 11 compares the VMAF results of dif-

ferent upscaling approaches for all 4 UVG videos. We can see

that full-frame super-resolution achieves the best VMAF results.

For łRacenightž and łFlowerKidsž, the differences among differ-

ent approaches are relatively small. However, for the remaining

two videos, full-frame super-resolution is significantly better than

bicubic interpolation. When 𝛼 is set to 1𝑒 − 6, our EVASR can also

achieve great performance while saving computational resources,

e.g., applying super-resolution for only ≈ 40% of all patches. In addi-

tion, EVASR outperforms Top-9 and Top-15 approaches, achieving

higher average VMAF results compared to them.
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Figure 6: Visual comparison of six patches. These patches are extracted from video frames in the UVG dataset [20].

Table 11: VMAF results comparison among 4 UVG videos.

VMAF RaceNight FlowerKids RiverBank Twilight Avg

Bicubic 98.9517 95.5286 84.9478 77.6817 89.2775

Full-frame SR 99.9857 99.8346 96.4589 91.5584 96.9594

Top-9 99.9297 96.9174 79.3394 88.2174 91.1010

EVASR (1e-5) 99.9106 97.8755 88.1485 78.9434 91.2195

Top-15 99.9741 98.1345 82.1510 89.8296 92.5223

EVASR (1e-6) 99.9843 98.2353 93.4733 86.1951 94.4720

Table 12: VMAF results comparison among 4 YouTube videos.

VMAF Haul How-to Vlog Challenge Avg

Bicubic 86.27 81.15 79.77 83.26 82.6125

Full-frame SR 88.20 83.80 81.77 84.78 84.6375

EVASR (1e-6) 86.80 82.78 80.54 83.91 83.5075

We also compared VMAF for all 4 YouTube videos in Table 12.

Using the model provided by FFmpeg that is not trained on each

specific video, the VMAF results of super-resolution still outper-

form bicubic results. Even though our optimization objective is

not VMAF, we can still achieve large VMAF improvements with

only small number of patches applying super-resolution. This in-

dicates our optimizer is able to select most important patches for

super-resolution, which is useful under computational constraints.

6.7 Further Bandwidth Savings

It is possible to further reduce the bandwidth required between the

edge and the client. Instead of streaming the full upscaled video

to the client, we can choose to only stream the łdiffž in pixel val-

ues in the Y channel only, namely the łmaskž. This assumes that

the client is capable of performing the bicubic upscaling itself. It

receives the łdiffsž between bicubic and deep-learning-based super-

resolution and applies the łdiffsž to the bicubic-upscaled frame,

thereby achieving the higher quality provided by super-resolution.

To get a mask for each video, the edge computes the different pixel

values between our optimized video frame and the video frame

upscaled via bicubic interpolation. It then compresses the mask

data as lossless .png files. Taking the 4 videos in the UVG dataset

as an example, Table 13 shows that nearly 40% bandwidth savings

Table 13: Size comparison: full video vs. mask-only

size (in MB) RaceNight FlowerKids RiverBank Twilight

Full video 261 240 263 192

Mask-only 150 148 136 90

can be achieved compared to directly streaming the full optimized

video.

7 VISUAL RESULTS

Figure 6 shows the upscaling results of six patches from three

different videos: łRiverBankž, łRaceNightž and łFlowerKidsž. Each

of these patches represents 1/36 of the video frame it was contained

in. These patches are associated with relatively high saliency score.

Thus, our EVASR selects them for super-resolution-based upscaling.

In these images, bicubic interpolation results appear to be more

blurry, while super-resolution patches have better visual quality

and are visually closer to the groundtruth patch.

8 CONCLUSION

In this paper, we proposed EVASR, a system that performs edge-

based video delivery to clients with salience-aware super-resolution.

Unlike many prior works that perform full-frame super-resolution,

we propose to efficiently use the computation resources available at

the edge server by performing super-resolution on patches selected

by a saliency visual quality optimizer (SVQO), while the remaining

patches are upscaled via bicubic interpolation. We implemented our

EVASR system and performed extensive evaluations. Results show

that the SVQO optimizer can effectively select a set of patches for

super-resolution that improves both the saliency visual quality and

the VMAF quality metric. In addition, EVASR can support real-time

per-frame super-resolution to 1920x1080 and can support multiple

clients’ super-resolution requests simultaneously.
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