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Abstract

3D Gaussian Splatting (3DGS) is an emerging media representation
that reconstructs real-world 3D scenes in high fidelity, enabling
6-degrees-of-freedom (6-DoF) navigation in virtual reality (VR).
However, developing and evaluating 3DGS-enabled applications
and optimizing their rendering performance require realistic user
navigation data. Such data is currently unavailable for photore-
alistic 3DGS reconstructions of real-world scenes. This paper in-
troduces EyeNavGs, the first publicly available 6-DoF navigation
dataset featuring traces from 46 participants exploring twelve di-
verse, real-world 3DGS scenes. The dataset was collected at two
sites, using the Meta Quest Pro headsets, recording the head pose
and eye gaze data for each rendered frame during free world stand-
ing 6-DoF navigation. For each of the twelve scenes, we performed
careful scene initialization to correct for scene tilt and scale, en-
suring a perceptually-comfortable VR experience. We also release
our open-source SIBR viewer software fork with record-and-replay
functionalities and a suite of utility tools for data processing, conver-
sion, and visualization. The EyeNavGS dataset and its accompanying
software tools provide valuable resources for advancing research
in 6-DoF viewport prediction, adaptive streaming, 3D saliency, and
foveated rendering for 3DGS scenes. The EyeNavGS dataset is avail-
able at: https://symmru.github.io/EyeNavGS/.
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1 Introduction

Since its introduction in 2023, 3D Gaussian Splatting (3DGS) [21]
has quickly emerged as a popular immersive media format for 3D
scene representation, enabling high-fidelity, 6-degrees-of-freedom
(6-DoF) exploration of complex real-world environments. Due to
its fast training time and real-time rendering speed, it has received
significant attention from both academia and industry [6, 14, 20,
22, 26, 30, 46]. 3DGS has unlocked new possibilities, including
rendering on mobile devices with WebGL support [2, 3, 32, 34]
and extending traditional video streaming paradigms to full 6-DoF
volumetric content. For example, recent works such as SGSS [47]
and L3GS [44] have proposed streaming approaches for static 3DGS
scenes. LapisGS [38] introduced a layered 3DGS representation
that supports progressive adaptive streaming. Building on LapisGS,
LTS [42] proposed approaches for adaptive streaming of dynamic
3DGS scenes.

However, the development and evaluation of these 3DGS-enabled
systems and applications are hampered by the lack of suitable
datasets. To properly assess system performance of adaptive stream-
ing algorithms, rendering optimizations, compression strategies,
and quality of experience under real-world conditions, large-scale
datasets recording authentic user interaction with 6-DoF scenes
are essential. To the best of our knowledge, no publicly available
dataset currently captures such 6-DoF user navigation traces for
real-world scenes reconstructed by 3DGS. The absence of such
datasets forces researchers to rely on synthetic traces [29, 47] or
datasets collected from different 3D representations [23], which
may not faithfully represent user interactions with high-fidelity
3DGS content.

To close this gap, this paper introduces EyeNavGS, the first pub-
licly available dataset of user navigation traces. The dataset includes
traces through twelve scenes. These scenes include both indoor
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and outdoor environments, offering diverse visual characteristics

for studying user navigation behaviors and performance-quality

tradeofls in virtual reality (VR). Our contributions are summarized
as follows:

e The EyeNavGS Dataset. We collected navigation traces of 46
participants. Traces were collected at two physical locations.
Each trace includes a human user’s exploration of twelve di-
verse indoor and outdoor scenes reconstructed by 3DGS. Each
scene underwent careful initialization for tilt correction, metric
scale establishment, and starting viewpoint selection to ensure
perceptually comfortable VR experiences. The dataset includes
per-frame head pose and eye gaze data, captured with Meta Quest
Pro headsets during free world standing exploration.

e The EyeNavGS Record-n-Replay Software. We release our
open-source software, a fork of the SIBR viewer [8] for 3DGS, en-
hanced with record-and-replay functionality. This fork includes
capabilities for recording user traces and replaying these traces
frame-by-frame for visualization, video generation, and detailed
offline analysis.

e The EyeNavGS Utility Tools. In addition to the core software,
we provide a suite of utility tools. These tools include conversion
operations to ease integration with other frameworks and allow
visualization of collected traces.

We anticipate this dataset and its accompanying software will
facilitate more reliable and comprehensive evaluations of 6-DoF
viewport prediction, view-adaptive streaming, 3D saliency, and
foveated rendering for 3DGS. We also encourage collaborative ex-
pansion of this dataset, aiming to create a richer collection of data
for advancing research in immersive media experiences.

2 Related Work
2.1 6-DoF Navigation Datasets

The importance of 6-DoF navigation datasets in evaluating the
streaming performance and user experience in immersive environ-
ments is well-recognized in the research community in recent years.
While several 6-DoF navigation datasets have been created to date,
each of them has their distinct focus and limitations.
User navigation with synthetically generated environments.
Khan and Chakareski [9, 23] introduced the “NJIT 6DOF VR Naviga-
tion Dataset”, which recorded 6-DoF traces of three users exploring
a synthetic “Virtual Museum” (sourced from the Unity Asset Store)
using an HTC Vive wireless VR headset. Similarly, Chen et al. [10]
collected the VRViewportPose dataset, recording viewing traces of
30 participants on three different platforms, a desktop, an Oculus
Quest 2 VR headset, and an Android smartphone as they interacted
with three VR games with synthetic scenes. Most recently, Ouellette
et al. [33] created a point cloud video dataset with user behavior
traces collected via a Meta Quest 2 headset. The environment in
this dataset mainly consists of a synthetically modeled maze.
While these datasets, focusing on synthetic scenes, offer valuable
insights into user navigation behaviors, they do not capture inter-
actions within reconstructed representations of real-world scenes.
Real-world characteristics, such as fine-grained textural details or
subtle lighting variations, can influence user behavior [28]. Such
differing user behaviors could cause researchers to draw misleading
conclusions about the real-world effectiveness of 3DGS systems.
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Figure 1: SIBR resolves the coordinate system mismatch be-
tween OpenXR and 3DGS with a 180-degree camera rotation
around the x-axis.

User interaction with dynamic point clouds. Subramanyam et
al. [41] created a 6-DoF navigation dataset where users viewed 150
frames of dynamic point cloud sequences from the 8i dataset [12]
using an Oculus Rift headset. The 8i dataset features point cloud
representations of individual human subjects. As a result, user nav-
igation typically follows an “outside-looking-in” pattern. Thus, the
viewing patterns are likely to be substantially different from free ex-
ploration of expansive virtual worlds. Hu et al. released volumetric
video viewing behavior dataset [19] , recorded with the Meta Quest
Pro headset. In this dataset, 50 participants watched 26 volumetric
videos, represented as point clouds, from the FSVVD dataset [18]. A
limitation of using point clouds to collect these navigation datasets
lies in their their relatively low rendered visual quality. Even with
careful calibration and alignment, the produced point clouds cannot
render views at a photorealistic quality comparable to emerging
immersive media representations, such as neural radiance fields
(NeRF) [31] and 3DGS.

In summary, while several 6-DoF user navigation datasets have
been collected using synthetic environments and dynamic point
clouds, they do not address navigation within photorealistic recon-
structions of real-world scenes. Our dataset bridges this gap by
providing recorded traces of users navigating 3DGS scenes.

2.2 OpenXR and SIBR Viewer for 3DGS in VR

To experience 3DGS scenes immersively in VR, we use the open-
source SIBR viewer [8]. Specifically, our data collection software is
a fork of its gaussian_code_release_openxr branch, which ren-
ders 3DGS views to head-mounted displays (HMDs) via OpenXR [1].
OpenXR provides a standardized API for VR and augmented re-
ality (AR) applications and defines several reference coordinate
spaces. Figure 1(a) shows the OpenXR coordinate systems, which
are right-handed. In particular, OpenXR defines three main types
of reference spaces:

o View Space. The space is relative to the user’s head. For stereo
VR headsets, its origin is centered between two eyes. The axes are
defined as +X to the right, +Y up, and -Z in the forward viewing
direction.

e Local Space. For VR devices that support 3-DoF rotational track-
ing only, they only support the “Local Space”, where the headset
is locked to a fixed origin in the world, typically the user’s start-
ing position, with the +Y axis aligned with gravity. It is suitable
for stationary or “seated” experiences where the user does not
physically walk around.

e Stage Space. For VR devices that support the full 6-DoF tracking,
they can support the “Stage Space”. The “Stage Space” defines a
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flat, rectangular area on the physical floor that the user can freely
walk within-analogous to a performance stage. The XZ plane
is aligned with the floor, the +Y axis defines the “up” direction,
and the origin is fixed relative to the physical space. The “Stage
Space” allows an application to use tracked physical movements
(position and orientation).

SIBR VR Viewing Modes. Using the “Local” and “Stage” spaces,
the SIBR gaussian_code_release_openxr branch supports two
VR viewing modes: seated and free world standing (fws). The
seated mode is for stationary use, e.g., for VR headsets that sup-
ports 3-DoF (i.e., rotational) tracking only, mapping head rotation
to orientation and controller input to position.

The free world standing (fws) mode uses the “Stage Space”
to map the user’s tracked physical movements 1:1 to the virtual
scene and requires a VR headset that supports the full 6-DoF (i.e.,
both rotational and positional) tracking.

For our data collection, we used Meta Quest Pro, a headset with
6-DoF tracking capabilities. We thus only used the fws mode to
capture users’ natural physical movements in our trace collection.

Coordinate Systems Mismatch. Gaussians in a 3DGS scene are
trained from an initial point cloud obtained via COLMAP [36, 37].
Thus, 3DGS inherits COLMAP’s coordinate system, which is a right-
handed system where the +Y axis points downwards and the +Z axis
points forward (as shown in Figure 1(b)). This convention conflicts
with OpenXR’s coordinate systems, where +Y points upwards. To
resolve this mismatch, the SIBR viewer source code rotates the cam-
era 180 degrees around the X-axis to ensure the scene is rendered
upright to the user.

3 EyeNavGS Record-n-Replay Software
3.1 Scene Initialization

To prepare each trained 3DGS scene for immersive exploration, we
correct each raw scene to align with human assumptions about the
physical world. These corrections include i) correcting the initial
quaternion to fix scene tilt, ii) selecting a per-scene scale factor to
ensure objects match their real-world proportions, and iii) estab-
lishing an example starting viewing position. Values for each scene
are shown in Table 1.

Scene Tilt and Orientation Correction. 3DGS scenes are trained
from initial point clouds generated by COLMAP [36, 37]. However,
the coordinate system reconstructed by COLMAP is not inherently
gravity-aligned. Improperly oriented scenes frequently result in
disorienting tilts, unnatural slopes, skewed camera behavior that
degrade the sense of presence and spatial coherence within the vir-
tual environment. To create a perceptually comfortable experience
in VR, we must first align the virtual scene with gravity.

Instead of modifying the trained 3DGS .ply file for each
scene, our solution is to apply a corrective transformation when
each scene is loaded. More specifically, the initial quaternion,
which rectifies any scene tilt and establishes a level ground
plane, is set via the poseInReferenceSpace member of the
XrReferenceSpaceCreateInfo structure.

To find the amount of scene tilt, we implemented a robust pro-
cedure using Blender [7] and the KIRI Engine add-on [24], which
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Table 1: Scene Initialization Parameters

Initial Quaternion Example Init. Pos.

Scene Scale
(gx: 9y 92, qw) (x,y,2)
truck -0.0896, 0, 0, 0.9960 0.76 0,2.1,-4
treehill -0.1961, 0, 0, 0.9806 12 2,1.4,2
train 0.0499, 0, 0.01, 0.9987 0.36 2,-1,6
stump -0.3950, 0, 0, 0.9187 1 -1, 2.65,-2.5
room -0.2334, 0, 0, 0.9724 2 0,1.15,0
playroom -0.1961, 0, 0, 0.9806 2.7 0,0.88,0
drjohnson -0.3699, 0, 0.5976, 0.7114 1 0,1.5,0
bicycle -0.1142, 0, 0, 0.9935 1.25 1.5,1.1,0
nyc -0.1483, 0, 0, 0.9888 0.64 -1.6,4.4,4
london 0,0,0,1 0.53 18, 12, -11
berlin 0.0299, 0, -0.0599, 0.9978 0.8 -1,1.8,-1.3
alameda -0.1867, 0, 0, 0.9824 0.64 3,2.6,-1

supports 3DGS point data. Within Blender, we inserted a refer-
ence plane perpendicular to the Y axis (which aligns with gravity)
and manually adjusted the scene’s orientation to ensure its ground
plane is orthogonal to the virtual Y-axis and matches the reference
plane. This process effectively corrected any residual tilt, ensur-
ing that users perceive the scene as grounded and stable, avoiding
perceptual illusions of being on a slope. These rotation parameters
were subsequently exported as quaternions and applied at runtime
during VR rendering to ensure proper alignment with the user’s
physical “stage” area.
Scene Scale Calibration. Another critical limitation of raw, trained
3DGS scenes is the absence of an intrinsic real-world scale, also due
to COLMAP. When rendered stereoscopically in a VR headset, this
lack of calibration between scene units and physical world units can
severely distort perceived object size. For example, under-scaled
scenes can cause the users to feel disproportionately large, like
a giant. This occurs because the physical inter-pupillary distance
(IPD) becomes effectively magnified relative to the virtual world’s
scale. Since VR rendering inherently relies on accurate simulation
of binocular disparity between the user’s eyes, calibrating the scene
scale is essential for preserving immersion and visual comfort.
Similar to scene tilt correction, we avoid directly modifying the
trained 3DGS . ply files. Instead, we apply a per-scene scale factor
at runtime that maps movements in real-world metric measure-
ments to the scene’s virtual units. Using the Blende-KIRI add-on
workflow, we introduced dimensionally accurate reference objects,
e.g., a 1-meter cube, into each scene. By comparing known dimen-
sions from the real scene (e.g., width of a vehicle, rise height of
staircases) to their 3DGS representations, we iteratively adjusted
the scene scale within Blender’s unit system. These calibrated scale
factors were recorded and applied during runtime, ensuring the
perceived virtual scene conforms to real-world proportions and
supports perceptually correct IPD rendering for stereo vision.

Initial View Positioning. Besides tilt and scale, the initial view
position also influences the user’s first impression and subsequent
exploration. The default origin ([0, 0,0]) of a 3DGS scene often
corresponds to the center of the captured volume, which can result
in undesirable starting viewpoints, such as inside a tree or a wall
or floating in the air. To improve user experiences, we manually
selected semantically meaningful and physically plausible initial
camera positions for each scene, typically floor-level regions with
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ample surrounding navigability. These locations were chosen to
emulate natural human perspective, facilitate intuitive exploration,
and avoid immediate occlusions or collisions.

3.2 Record-n-Replay Features

We extend the SIBR core rendering engine with record-and-replay
features tailored for 3DGS in OpenXR.

The Record Mode. In this mode, our modified OpenXR module
captures a user’s 6-DoF navigation and gaze data on a per-frame
basis. For each eye, the module records a comprehensive set of
parameters: field-of-view (FOV), eye position, head orientation
(quaternion), and, when available, gaze position and orientation
(quaternions). This data is synchronized with the rendering loop and
logged with precise timestamps to a structured csv file, ensuring a
complete and accurate offline reconstruction of the user’s viewing
experience.

The Replay Mode. The replay mode uses recorded traces to re-
produce the original VR session for analysis and view generation.
During replay, the system parses the trace and injects the logged
data line-by-line into the rendering pipeline, overriding the live
HMD pose information. The loadViewData() method handles this
internally by reading the csv trace and updating the per-frame
ViewData structure before rendering.

To generate video output, rendered frames are captured from
GPU memory using OpenGL’s glGetTexImage() API and then
converted into an OpenCV-compatible format for efficient encoding.
This process generates two separate videos, one for each eye, to
precisely replicate the original stereoscopic experience.

3.3 Data Output Format

Table 2 outlines the structure of the recorded csv traces. Each entry
consists of two rows for the left and right eyes, identified by the
ViewIndex column (0 and 1, respectively). The FOV for each eye is
defined by four radian values: FOV1 (left), FOV2 (right), FOV3 (top),
and FOV4 (bottom). Due to the interpupillary distance (IPD), the
world coordinates of the eye positions (Pos_X, Pos_Y, Pos_Z) differ
between the two eyes. In contrast, the head orientation, represented
by the quaternions Quat_X, Quat_Y, Quat_Z, and Quat_W, remains
the same for both.

The traces also include user gaze data on supported headsets (e.g.,
Meta Quest Pro). The eye gaze position in world space is given by
GazePos_X, GazePos_Y, and GazePos_Z. These values are similar
but not identical to the eye positions in the Pos_* columns. Sim-
ilarly, GazeQ_X, GazeQ_Y, GazeQ_Z, and GazeQ_W provide the eye
gaze orientation as a world-space quaternion. This can differ sig-
nificantly from the head orientation, accounting for eye movement
within the sockets. Finally, each frame is marked with a relative
timestamp in milliseconds.

Table 3 presents sample data from two consecutive frames. Note
that each frame is represented by two rows, corresponding to the
left and right eye views.

4 EyeNavGS Dataset

Sites. We collected user navigation traces at two sites: Rutgers
University (RU) in the New Jersey, USA and National Tsing Hua
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Table 2: Columns of the Recorded User Traces in csv

Name Description

ViewIndex Left eye: 0; right eye: 1.

FOV1 (rad) The left FOV angle.

FOV2 (rad) The right FOV angle.

FOV3 (rad) The top FOV angle.

FOV4 (rad) The bottom FOV angle.

Position X,Y,Z Eye position (i.e., head position offset

by half of IPD) in the world space.

Quaternion X,Y,ZW Head/view orientation as a quaternion,
in the world space (same for left and
right eyes).

GazePos X)Y,Z Eye gaze position in the world space.
GazeQ XY, ZW Eye gaze orientation as a quaternion, in
the world space.

Timestamp Time offset in ms since the left eye of

the first frame is recorded.

USB Cable

Rendering Rendering
77z Machine Machine
E ! 3m !
3m 3m

(a) Untethered user trace collec-
tion setup at the RU site.

(b) Tethered user trace collec-
tion setup at the NTHU site.
Figure 2: Real-time user trace collection setup showing the
tracked space, user with HMD, HMD connection, and the
rendering machine.

=
°
bicycle drjohnson playroom room
. ¥
g i
< /
treehill truck alameda berlin london

Figure 3: The 12 diverse 3DGS scenes used in our dataset.
The first eight scenes (top row and first two of bottom row)
are from the original 3DGS paper [21]. The final four scenes
were trained from the ZipNeRF dataset [5, 11] to expand
scene variety.

University (NTHU) in Hsin-Chu, Taiwan. The data collection pro-
tocols at both institutions received approval from their respective
Institutional Review Boards (IRB).

Participants. A total of 46 participants were recruited across the
two sites: 22 at RU and 24 at NTHU. The participants’ ages ranged
from 18 to 70.

Apparatus. As detailed in Table 4, participants at both collection
sites used a Meta Quest Pro headset with eye tracking enabled,
navigating a 3m X 3 m physical play area (OpenXR Stage Space).
The primary distinction between the sites, illustrated in Figure 2,
was the HMD connection method and GPU. The RU site provided
an untethered experience via Meta Air Link with an Nvidia RTX
4090, whereas the NTHU site used a tethered USB Link cable with
an Nvidia RTX 3080 Ti.



EyeNavGS: A 6-DoF Navigation Dataset and Record-n-Replay Software for Real-World 3DGS Scenes in VR

Table 3: Sample Values Extracted from a Recorded csv
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View FOV1 FOV2 FOV3 FOV4 Posy Posy Poszy Quaty Quaty Quaty Quaty GazeQx GazeQy GazeQy GazeQy GazePosxy GazePosy GazePosy
Index (rad) (rad) (rad) (rad)

0 —0.942 0.698 —0.942 0.733 -3.669 —3.657 4.658 0.495 0.294 0.124 0.808 0.251 0.085 0.024 0.964 —3.668 —3.657 4.657

1 -0.698 0.942 —0.942 0.733 -3.513 -3.561 4.588 0.495 0.294 0.124 0.808 0.245 0.104 0.045 0.963 -3.513 —3.561 4.589

0 -0.942 0.698 —0.942 0.733 -3.669 —3.656 4.657 0.494 0.294 0.123 0.809 0.249 0.087 0.026 0.964 —3.668 —3.656 4.657

1 —0.698 0.942 —0.942 0.733 -3.512 -3.560 4.588 0.494 0.294 0.123 0.809 0.243 0.106 0.048 0.963 —3.513 —3.561 4.588

Table 4: Dataset Collection Setups at the RU and NTHU Sites

Component RU Setup NTHU Setup

HMD Meta Quest Pro Meta Quest Pro

Rendering GPU: Nvidia RTX 4090 GPU: NVIDIA RTX 3080 Ti
Machine CPU: Intel 19-14900KF CPU: Intel 19-9920X
Connection ~ Wireless (Meta Air Link) Wired (5-meter USB Link)
Area 3mX3m 3mX3m

0os Windows 11 Windows 10

Participants 22 24

Stimuli. Stereoscopic views are rendered at 2160 X 2224 resolu-
tion per eye. Twelve distinct real-world scenes were used for user
navigation. Eight of these scenes were selected from the thirteen
pre-trained 3DGS scenes presented in the original 3DGS paper [21],
shown in Figure 3. These scenes originate from three datasets: the
MipNeRF360 dataset [4], the Tanks&Temples dataset [25], and the
Deep Blending dataset [17]. They contain a variety of real-world
scenes including indoor, outdoor, and natural environments. For
our study, we used the “garden” scene from this pre-trained dataset
for participant training. We excluded “kitchen”, “flowers”, “counter”,
and “bonsai” scenes due to their limited viewing volumes, making
them unsuitable for VR navigation.

In addition, we also trained 3DGS representations for four scenes
from the ZipNeRF dataset [5, 11], namely “alameda”, “berlin”, “lon-
don”, and “nyc”, shown in Figure 3. These scenes are mainly indoor
scenes, while some of them also feature outdoor sections.
Procedure. Each participants explored twelve scenes for one
minute each, in the free world standing (fws) mode. Partici-
pants were instructed to freely explore the virtual scene via natural
movements such as walking and turning in the 3m X 3 m area. No
specific task was assigned to the participants during the sessions. A
one-minute break was provided between each scene exploration to
allow for participant rest and for the system to load the next scene.
Dataset. Our dataset is organized into scene-specific folders (e.g.,
“train”, “truck”). Within each scene folder, each user trace is
stored as a csv file named as: {user}_{scene?}.csv. For instance,
userl_truck.csv records the trace of userl exploring the “truck”
scene. For a detailed description of the dataset, please visit our
project website: https://symmru.github.io/EyeNavGS$/.

5 EyeNavGS Utility Tools

We developed a suite of utilities for the interoperability, repro-
ducibility, and visualization of the collected traces. We include
these utilities in the EyeNavGS software’s utils folder and briefly
describe them in this section.

Conversion from Virtual World Coordinates to Physical
Stage Coordinates. The EyeNavGS dataset records user navigation
traces including the head pose and eye gaze information in “virtual
world coordinates”. This facilitates direct replay of the traces for

Figure 4: Example eye gaze visualization of the bicycle scene.

view generation. We provide a utility to convert these traces to
“physical stage coordinates”, which represent the user’s movements
in the physical world on a 1:1 metric scale (i.e., a one-meter physical
movement in corresponds to a one-unit displacement in these coor-
dinates). This conversion undoes the scene initialization transforms
including the scene tilt correction, scene scaling, and initial view
positioning, detailed in Section 3.1. The resulting “physical stage
coordinates” effectively reconstruct user’s movement in the 3m x
3 m physical space. We use the converted physical stage coordinates
in our dataset analysis in Section 6.

Compatibility with Other Frameworks. The EyeNavGS dataset
stores user navigation traces in the . csv format, recording camera
positions and rotation quaternions. Popular modern viewers, such
as the web viewer in NeRFstudio [43] and SGSS [47], use . json
format with a 4 X 4 homogeneous matrix for pose representation
in a different coordinate system for trace replay. To enable compat-
ibility with these frameworks, EyeNavGS includes two utility tools:
csv2json.cpp for converting recorded traces to . json format in
the correct coordinate system and json2csv.cpp for converting
. json files exported from other frameworks to .csv format, also
in the correct coordinate system, enabling replay in the EyeNavGS
viewer. With these two tools, EyeNavGS ensures compatibility with
other frameworks.

Eye Gaze Visualization. To visualize user attention during scene
navigation, our eye gaze tool processes replayed stereoscopic videos
by overlaying the recorded eye gaze data. For each frame, a visual
marker (e.g., a circle) is rendered on both the left and right eye
views to indicate the participant’s fixation. The resulting video
displays the stereoscopic view side-by-side, illustrating the user’s
gaze path. Figure 4 shows an example frame with eye gaze overlaid
on stereoscopic rendered views.

6 Dataset Analysis

Figure 5 shows two examples of the participants’ tracked position
in the 3 m X 3 m physical stage area. For each figure, we plot the
traces of three users’ movements in the 60-second period, in dif-
ferent colors. Since movement along the vertical Y-axis (aligned
with gravity) is much less pronounced than movement along the
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(a) bicycle XZ-plane (b) nyc XZ-plane
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Figure 5: User movement trajectories for an outdoor and an

indoor scene, with three users per scene plotted with differ-

ent colors. Top row: horizontal user movements (on the XZ

plane) within the 3 m X 3 m area; Bottom row: corresponding
changes of the headset height (along the Y-axis) over time.

Table 5: Statistics of Navigation Traces Per-session (60 Sec-
onds) at Two Collection Sites

Metric RU Site NTHU Site
Avg. # of recorded frames 3,420 2,396
Frames per second (fps) 57.04 39.95
Total distance traveled (meters) 17.27 13.62

horizontal XZ-plane, we plot it on a separate graph for clarity.
The average distances walked by the participants in the 60-second
viewing sessions are reported in Table 5.

As the GPU and HMD connection methods are different at the RU
and NTHU sites, the observed frame rates during trace collection
also differ. As shown in Table 5, the RU site, with its more powerful
GPU for rendering, averaged approximately 57 frames per second
(fps), compared to approximately 40 fps at the NTHU site. The
average frame rates for each scene are provided in Table 6.

7 Dataset Use Cases

The EyeNavGS dataset, with its detailed 6-DoF navigation traces
including head pose and eye gaze information, offers valuable oppor-
tunities for research in immersive computing systems. We describe
example use cases in this section.

6-DoF Viewport Prediction and Streaming Optimization. The
EyeNavGs dataset addresses the lack of 6-DoF user navigation traces
in reconstructed real-world scenes, which existing datasets [9, 10,
23, 41] do not provide. The fine-grained head pose and eye gaze of
reconstructed real-world scenes in VR can be used for developing
6-DoF viewport prediction algorithms. Such prediction can inform
the design of adaptive media streaming algorithms to fetch only the
content needed for rendering the user’s viewport without wasting
bandwidth on unviewed portion of the representation, e.g., [16, 44,
47).

3D Saliency and Saliency in VR. The rich per-frame eye gaze
information in the EyeNavGS dataset also offers opportunities for

Zihao Ding et al.

Table 6: Average Frame Rates for Each Scene at Two Sites

Site alameda berlin bicycle drjohnson london nyc

RU 43.68 55.33 42.12 37.47 65.32 44.18
NTHU 36.68 40.62 33.15 33.81 45.86 37.66
Site playroom room stump train treehill truck
RU 47.53 71.37 68.80 71.30 70.91 69.75
NTHU 36.67 41.80 44.43 43.65 41.63 43.17

3D saliency research [13, 40, 45]. This detailed fixation data can
be aggregated across participants to create the groundtruth 3D
saliency maps of the 3DGS scenes. These maps can then be used
for training 3D saliency models that better predict where the users
will look in reconstructed real-world scenes. Furthermore, since
the reconstructed 3DGS scene may contain imperfections such as
under-constructed areas and other visual artifacts, our dataset also
enables studies into how these imperfections influence user gaze
and navigation behavior.

Foveated Rendering Optimization. Foveated rendering is an
important technique in VR designed to reduce the rendering com-
putation demand and improve the frame rates [27, 35, 39]. Given
that the visual acuity of human vision decreases sharply away from
the foveal center, foveated rendering works by reducing the shad-
ing rates in the peripheral (non-foveal) region of the user’s view.
This can achieve significant performance gain while with minimal
impact on visual quality. Existing works have explored applying
foveated rendering for 3DGS rendering, e.g., MetaSapiens [29] and
VR-Splatting [15]. Our EyeNavGS dataset features per-frame eye
gaze traces collected during free world standing 6-DoF navigation of
3DGS scenes, facilitating evaluation and optimization of real-world
performance of these foveated rendering techniques.

8 Conclusion

In this paper, we present EyeNavGS, the first publicly available
6-DoF navigation dataset built on photorealistic 3DGS reconstruc-
tions of real-world scenes, together with an open-source record-
and-replay software fork of the SIBR viewer. EyeNavGS focuses on
capturing detailed and realistic behavior. It does so by collecting
user traces in scenes of real-world environments, carefully cali-
brated (tilt, scale, and starting viewpoint) to maintain realism. Our
dataset captures stereoscopic pose, field-of-view, and eye-tracking
traces. In addition, multi-site data collection (46 participants across
two institutions) ensure a diverse population of participants. The
realism, detail, and diversity of EyeNavGS fills a critical gap for
immersive media researchers, allowing user-centric evaluation in
core areas such as streaming, rendering, and compression.
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