
AdaP-360: User-Adaptive Area-of-Focus Projections for
Bandwidth-Efficient 360-Degree Video Streaming

Chao Zhou
SUNY Binghamton

czhou5@binghamton.edu

Shuoqian Wang
SUNY Binghamton

swang130@binghamton.edu

Mengbai Xiao
The Ohio State University

xiao.736@osu.edu

Sheng Wei
Rutgers University

sheng.wei@rutgers.edu

Yao Liu
SUNY Binghamton

yaoliu@binghamton.edu

ABSTRACT

360-degree video is an emerging medium that presents an immer-
sive view of the environment to the user. Despite its potential
to provide an immersive watching experience, 360-degree video
has not achieved widespread popularity. A significant cause of
this slow adoption is the high-bandwidth requirements of the for-
mat. The primary source of bandwidth inefficiency in 360-degree
video streaming, un-addressed in popular transmission methods,
is the discrepancy between the pixels sent over the network (typ-
ically the full omnidirectional view) and the pixels displayed in
the head-mounted display’s field of view. At worst, roughly 88% of
transmitted pixels remain unviewed.

In this work, we motivate a user-adaptive approach to address
inefficiencies in 360-degree streaming through an analysis of user-
viewing traces. We design a greedy algorithm to generate projec-
tions of the spherical surface that allow the user-view trajectories
to be efficiently transmitted. We further demonstrate that our ap-
proach can be applied to many popular 360-degree projection lay-
outs. In BD-rate experiments, we show that the adaptive versions
of the rotated spherical projection (RSP) and equi-angular cubemap
(EAC) can save 26.2% and 24.0% bitrates on average, respectively,
while achieving the same visual quality of rendered views compared
to their non-adaptive counterparts in a realistic scenario. These
adaptive projections can also achieve 53.1% bandwidth savings over
the equirectangular projection.

CCS CONCEPTS

· Information systems → Multimedia streaming; · Human-

centered computing → Virtual reality.

KEYWORDS

360-degree video streaming; area-of-focus projections; user-adaptive;
BD-rate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’20, October 12–16, 2020, Seattle, WA, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7988-5/20/10. . . $15.00
https://doi.org/10.1145/3394171.3413521

ACM Reference Format:

Chao Zhou, Shuoqian Wang, Mengbai Xiao, Sheng Wei, and Yao Liu. 2020.
AdaP-360: User-Adaptive Area-of-Focus Projections for Bandwidth-Efficient
360-Degree Video Streaming. In Proceedings of the 28th ACM International

Conference on Multimedia (MM ’20), October 12–16, 2020, Seattle, WA, USA.

ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3394171.3413521

1 INTRODUCTION

360-degree video provides users with an omnidirectional view of
the environment. This omnidirectional view immerses the user in
the recorded scene when viewed through a head-mounted display
(HMD). This more-natural exploration of the surrounding scene can
be useful to users in settings that benefit from greater immersion.

Widespread adoption of 360-degree streaming applications, how-
ever, is inhibited by the high bandwidths required for the high-
quality 360-degree video delivery. High bandwidths are required
not only due to the high definition video desired by end users, but
also due to the large percentage of wasted bandwidth ś unique to
360-degree videos. While 360-degree videos encode full omnidirec-
tional views surrounding a camera, views rendered on HMDs have
only limited fields-of-view (FoVs). For example, to render a view
with 90° by 90° FoV, as little as 11.7% pixels of a full 360-degree
video frame are needed. The remaining 88% transmitted data is not
viewed and thus wasted.

One method of addressing this bandwidth inefficiency involves
improving the efficiency when projecting pixels from the sphere
to a 2D image, e.g., the equi-angular cubemap (EAC) [2]. However,
efficient projections themselves do not fully solve the problem:
the full omnidirectional views are still transmitted to the viewer,
resulting in a high percentage of unviewed pixels.

Another family of methods are offset projection approaches (e.g.,
the offset cubemap [3]). These methods encode a pre-determined
set of versions for a single temporal video segment, with each
version representing a single direction of the omnidirectional view
in higher quality. As a result, the percentage of unviewed pixels is
reduced when the user’s viewing direction is perfectly aligned with
the high-quality direction. However, these approaches suffer from
two main drawbacks. First, each version has a single high-quality
direction while a user’s viewmay change and form a trajectory even
over a short time period (e.g., a few seconds). As a result, when the
user’s view deviates from the high-quality direction, the percentage
of unviewed pixels increases, and the quality of rendered views
quickly drops. Second, to account for various viewing directions, a
large number of versions of a single temporal video segment need

https://doi.org/10.1145/3394171.3413521
https://doi.org/10.1145/3394171.3413521

to be encoded (e.g., 22 versions [28]), which significantly increases
the storage overhead.

Finally, tile-based approaches partition the video segments spa-
tially into multiple tiles and only download the tiles predicted to
be viewed [12, 13, 17ś19, 24, 27]. These approaches are effective
at reducing the unviewed fraction of downloaded pixels. However,
they create technical challenges at the client side. Here, streaming
clients must navigate a large decision space to select a subset of
tiles or tile bitrates. Further, these clients must stage individual
tile downloads so that all of these downloads meet the segment
playback deadline. Moreover, downloaded tiles must be decoded in
time for playback and view rendering, and improper tile decoding
scheduling can lead to playback stall [20].

In this paper, we propose a general method that adapts existing
spherical projections to user viewing behaviors. It aligns high-
quality visual content with user’s viewing trajectories when watch-
ing 360-degree videos. In addition, this adaptation method avoids
tiling videos, enabling practical 360-degree video streaming systems.
Overall, this work makes the following contributions:

• We analyzed 360-degree head movement datasets and found
that it is possible to create area-of-focus projections whose high-
quality regions align with user-view trajectories.

• We propose AdaP-360 ś a user-adaptive area-of-focus scheme
that can be combined with many existing spherical projections
for encoding 360-degree frames. In this scheme, each frame is
constructed to have one high- and one low-quality region.

• Our proposed AdaP-360 scheme selects and orients the high-
quality regions to efficiently cover past user-view trajectories of
each temporal video segment under a storage constraint. These
high-quality areas capture typical user łview-trajectoriesž across
a temporal segment, increasing view efficiency.

• We apply AdaP-360 to three popular spherical projections: i) the
equi-angular cubemap projection (EAC), ii) the rotated spherical
projection (RSP), and iii) the barrel projection (BRL).

To evaluate our approach, we conducted extensive experiments
using actual user traces. BD-rate results from these experiments
show that AdaP-360 can achieve up to 55.7% bitrate savings on
average compared to the equirectangular projectionwhile achieving
the same visual quality of rendered views.

2 BACKGROUND AND RELATED WORK

2.1 Spherical Projections

360-degree videos are best represented as pixels on a spherical sur-
face. Thus, they are encoded by first projecting spherical pixels of
each omnidirectional view frame to a 2D rectangular plane. Pla-
nar pixels are then encoded using standard video codecs such as
H.264 [22] and HEVC [21].

A commonly used spherical projection is called the equirectan-
gular projection (EQ) (shown in Figure 1(a)). In this projection,
spherical pixels are projected onto a rectangular plane based on
their yaw and pitch on the sphere with respect to a reference coor-
dinate system1. Spherical projections, however, can over-represent

1For example, consider a reference coordinate system where the xz-plane is located
on the equator of the sphere and that the north and south poles are located along the
y-axis, then we can assume yaw and pitch on the sphere are equivalent to longitude
and latitude as long as the yaw rotation is applied before the pitch rotation and that
the north pole has a pitch value of 90°.

spherical pixels. The number of planar pixels that appear on a pro-
jection for each spherical pixel depends on both the chosen planar
projection and the location of the pixel. For example, the equirect-
angular projection maps a single pixel at the north pole (i.e., pitch
90°) to a full row of pixels in the plane. This polar pixel thus uses
the same number of planar pixels as all pixels from the sphere’s
equator (i.e., pitch 0°) in the equirectangular projection.

Researchers at Google characterized the uneven distribution of
projected spherical pixels using łuniformity comparisonsž [2]. They
used a saturation map to show if too many or too few pixels are
used by the projection to encode different areas on the sphere. Their
findings led them to design a new spherical projection scheme: the
equi-angular cubemap (EAC) projection. EAC is a variation of
the standard cubemap projection [7]. Unlike the standard cubemap,
EAC applies a transformation to pixel position allowing spheri-
cal pixels to more-closely match their corresponding areas on the
sphere. EAC produces six cube faces. These faces are then laid out
on a 2D plane for video encoding. To achieve the best video com-
pression, the six cube faces are laid out in two bands, a top band
containing continuous video content on the left, front, and right
faces, and a bottom band containing continuous video content on
the top, back, and bottom faces. This layout is also called the łbase-
ball layoutž, wrapping the sphere like a two-piece leather covering
the core of a baseball. Figure 1(c) illustrates how the six faces are
laid out in the baseball layout. Based on our findings, 360-degree
videos on YouTube are encoded using EAC in the baseball layout
today.

In a parallel effort to address the inefficiency of the equirectan-
gular projection, Facebook researchers proposed the Barrel pro-
jection (BRL) [4]. BRL is motivated by the observation that while
the equirectangular projection over-samples areas near the poles,
its center [-45°, 45°] pitch portion is roughly uniform. The barrel
projection thus encodes the top and bottom quarter of the equirect-
angular projection near the poles in two circular areas, using many
fewer pixels than the center portion. These two circles are then
positioned adjacent to the center [-45°, 45°] pitch portion of an
equirectangular projection. Figure 1(b) shows the barrel projection.

The rotated sphere projection (RSP) [25] also takes advantage
of the uniform pixel density at the center band of the equirectan-
gular projection. It includes the central [-45°, 45°] pitch and [-135°,
135°] yaw portions of two differently-configured equirectangular
projections. The two equirectangular projections are rotated by
180° in yaw and 90° in roll directions relative to one another. Figure
1(e) shows how the two portions are laid out on the projected im-
age. RSP is similar to EAC in that the top portion in RSP roughly
corresponds to the top row in EAC, though different pixel sampling
methods are used in these projections. RSP is also similar to the
barrel projection in that both projections use the center [-45°, 45°]
pitch portion of the equirectangular projection. However, the top
portion of RSP contains [-135°, 135°] yaw portions while the main
portion of the barrel projection contains the full 360° yaw portions.

2.2 Bitrate-Adaptive 360-Degree Streaming

To facilitate video streaming under varying bandwidth conditions,
encoded 360-degree videos are delivered to users via dynamic adap-
tive streaming over HTTP (DASH) [15], the de facto standard for
online video streaming. With DASH, a 360-degree video is divided

(a) Standard
Equirectangular
Projection (EQ)

rear-facing portion

front-facing portion

(e) Rotated Sphere Projection
(RSP)

high quality,
front-facing portion

low quality portion

(f) AdaRSP with the # of pixels
in rear-facing portion reduced

by half

low quality portion

high quality portion,
left, front, and right faces

(d) AdaEAC with the # of
pixels in rear-facing portion

reduced by half

left

to
p

front

ba
ck

right

bo
tto

m

(c) Equi-Angular Cubemap
Projection (EAC)

(b)
Adaptive
Barrel
Projection
(AdaBRL)

Figure 1: Spherical projections discussed and proposed in this paper. Note that we omit the barrel projection in this figure as

its layout is the same as AdaBRL.

temporally into segments, each containing up to a few seconds of
video content. Each segment is encoded in different bitrates. During
streaming, the client downloads each segment in a bitrate that best
matches its available bandwidth.

At playback time, the video player renders views on the dis-
play using omnidirectional frames decoded from the downloaded
segment. The content inside the rendered view is based on both
user’s viewing direction (e.g., Euler angle <yaw, pitch, roll>) and
the display’s field of view (FoV).

2.3 View Inefficiency in 360-Degree Streaming

To allow the user to freely move his/her head during the playback
and always render desired view, 360-degree video segments encode
full omnidirectional frames. However, both human eyes and 360-
degree video viewing devices have limited FoVs. During playback,
although all pixels on the omnidirectional view are transmitted,
only the portion displayed in the user view’s FoV is rendered. This
discrepancy between transmitted pixels and viewed pixels means
that a significant amount of transmitted pixels are unviewed, and
the associated transmitted data is wasted. For example, consider an
equirectangular-projected video frame, to render a 90° by 90° view
centered at the 0° latitude line, only 11.7% of the pixels in the full
frame is required. The remaining 88% of downloaded pixels are not
viewed.

To reduce view inefficiency, the research community has pro-
posed tiling, dividing the projected video frames spatially into
tiles [12, 13, 17ś19, 24, 27]. During streaming, the client only down-
loads high-quality tiles for the regions it expects the user to view.
Despite their theoretical attractiveness, tiling methods pose practi-
cal difficulties. First, noticeable seams can show up in views con-
taining adjacent tiles of different qualities, leading to poor user-
reported visual quality [26]. Second, the tile selection problem is
significantly more difficult than choosing a single temporal seg-
ment bitrate level as in standard DASH adaptation. In addition, the
tile selection must be computed in the online streaming setting,
further increasing practical difficulties [14, 20]. Finally, each tile
must be separately-decoded. Scheduling decoding to meet playback
and view-rendering deadlines can be challenging [20].

To achieve view efficiency without tiling, Facebook proposed the
offset cubemap projection (OFFSET) [3]. The offset cubemap
projection distorts spherical pixels so that one cube face encodes a
small pixel-concentration area on the sphere in high-quality. If the
user’s view is near the center of the high-quality face, high view
efficiency can be achieved. However, as the offset cubemap’s pixel-
concentration area on the sphere is very small, e.g., 30° by 30° FoV,
even small view direction changes (e.g., head movements) during
playback of the video segment can cause the view to deviate from

0 30 60 90 120 150 180 210 240 270 300 330 360
Longitude

−90

−60

−30

0

30

60

90

La
tit
ud

e

Figure 2: View trajectories of 12 users (randomly selected

from a dataset of 58 users’ head movements [11]) watching

2 seconds in a video. Every dot in this figure represents the

view orientation of one frame. Dots of the same color belong

to the same user’s trajectory.

the pixel-concentration area, increasing number of wasted pixels,
and decreasing user-observed visual quality [28]. In addition, offset
cubemap uses 22 default pixel-concentration directions, resulting
in significant server-side storage overhead.

3 MOTIVATION: VIEW TRAJECTORIES

360-degree video allows users to freely view content in any di-
rection. User-view orientations often form trajectories which can
cover a long distance. Figure 2 plots 12 users’ view orientations
watching the same temporal portion of a video for 2 seconds. Here,
we represent a view orientation as the view center’s longitude and
latitude coordinates on the sphere. Each user’s view orientations are
plotted in a different color. View trajectories can be seen through
sequences of the same color in the plot.

These long trajectories limit the visual qualities that can be
achieved in practice by offset projection approaches having areas
of focus that extend radially from a single point. Because these sym-
metric orientations do not align well with observed user behavior,
rendered views are more likely to include less high-quality content,
which means the user view will deviate from the high-quality area
for many segments.

We further analyzed the view trajectories of all video segments
in a video and present the results in Figure 3. In this figure, we
consider the view trajectories of 58 users watching a 58-second
long video divided into 58 segments. (Each segment contains 1
second video content.) The view trajectories are extracted from a
publicly-available head movement dataset [11].

We first analyzed the centroid of all view orientations in the video
segment and the view orientation in each video frame (for a 30
frame-per-second video, a 1 second segment contains 30 frames in
total). Figure 3 (left) shows the cumulative distribution of maximum
angles from centroids of each trajectory for all 58 segments and 58

0 5 10 15 20 25 30 35 40
Maximum angle (in degree) between
 view orientations and their centroid

 within 1 second

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

0 5 10 15 20 25 30 35 40
Maximum angle (in degree) of view

 movement in two orthogonal
 directions within 1 second

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Figure 3: Left: The cumulative fraction of maximum view

orientation angles from the centroid of each trajectory.

Right: The cumulative fractions of maximum view orien-

tation angles from the minimum (solid red) displacement

planes (with plane normal pmin) and planes with normal

pmin × pmax (dashed black) for each view trajectory.

users. We can see that view orientations can significantly deviate
from the centroid of the view trajectory within a 1-second period.

It is further possible to select two orthogonal directions where
the angular displacements of orientation vectors in a trajectory are
maximal in one direction but minimal in the other. To find these
directions, we set up the following optimization problem:

pmin = argminp
∑

i

(pT · vi)
2

pmax = argmaxp
∑

i

(pT · vi)
2

∑

i

(pT · vi)
2
= pT

(

∑

i

vi · v
T
i

)

p = pTMp

, where vi represents a user-view orientation in frame i , | |vi | | = 1,
and | |p | | = 1. Here, pmin and pmax can be found by taking the eigen-
vectors ofM associated with the minimum or maximum eigenval-
ues, respectively.

Figure 3 (right) shows cumulative distributions of the maximum
angles from planes having normal pmin and pmin × pmax (cross
product of pmin and pmax) for each trajectory in the dataset. Here,
pmin is the eigenvector associated with the minimum eigenvalue,
and pmax is associated with the maximum. For over 93% of these
1-second long view trajectories, the maximum angle with their
respective planes having normal pmin is smaller than 5 degrees (in
red solid line). On the other hand, for only 26% view trajectories,
the maximum angle with their respective plane having normal
pmin × pmax is smaller than 5 degrees (in black dashed line).

Based on the observations that user-view trajectories can be
effectively decomposed into minimal and maximal directions, in
the next section, we describe our design for an adaptive area-of-
focus projection scheme that better captures this typical viewing
pattern.

4 AdaP-360: USER-ADAPTIVE
AREA-OF-FOCUS PROJECTIONS

In this section, we propose AdaP-360 ś a general user-adaptive
projection generation method. Our method leverages historical user
view data to select sets of high-quality regions that can efficiently
cover past user-view trajectories of each temporal video segment.

Figure 4: Pixels in red-shaded positions are needed for

rendering a view trajectory that moves from <yaw=-45°,

pitch=0°> to <yaw=0°, pitch=0°>. Left: in an equirectangular-

projected frame, the red-shaded positions are 18% of all pix-

els in the frame. Right: when the view trajectory perfectly

aligns with the horizontal center line of the adaptive RSP

(AdaRSP) frame’s high quality portion, the red-shaded posi-

tions now occupy 32% of all pixels in the frame.

This method generates adaptive projections derived from a vari-
ety of underlying spherical projections such as EAC, RSP, and BRL.
Each layout is configured to devote more pixels to one area-of-focus
region (creating a high-quality region) and sub-sample pixels in the
remaining region (creating a low-quality region).

4.1 Overview

Align area-of-focus region with view trajectory. Our main in-
novation in the user-adaptive area-of-focus projection is that we
select a high-quality region (i.e., the area-of-focus) that best aligns
with the user-view trajectory. We can then decrease the quality of
the other region, saving bandwidth on unviewed pixels. For exam-
ple, the top portion of RSP covers a 90° by 270° area. Thus, if a view
trajectory perfectly aligns with the horizontal center line of the top
portion, the whole trajectory can be covered by the high-quality
region. Figure 4 illustrates this example. As a greater percentage of
pixels are used to render views, the percentage of unviewed (i.e.,
wasted) pixels decreases, allowing us to achieve bandwidth savings
without sacrificing visual quality.
Select AdaP-360 configurations for encoding and server-side

storage. While the set of possible user-view trajectories is huge,
only limited storage is available at the streaming server. Thus, it
is infeasible to create one area-of-focus projection for each view
trajectory. Instead, area-of-focus projections should be selected
such that each high-quality region can cover not just one user-view
trajectory of a segment, but view trajectories from groups of users
with similar behaviors. To do so, we design an efficient algorithm
to select a small set of adaptive area-of-focus projections (AdaP-
360) that best represent groups of historical trajectories over a
segment. Once these AdaP-360 configurations are determined, video
segments are transcoded accordingly and stored at the streaming
server for clients to request.
Choose the best AdaP-360 to download during streaming.

During streaming playback, the client must select and download
a video segment encoded in an adaptive area-of-focus projection
that roughly aligns the user view with the high-quality region of
the projection. Otherwise, the visual quality of rendered views will
suffer. In the worst-case scenario, the user’s view can be centered
at the down-sampled low-quality portion.

To address this problem, we predict each position of user’s view
trajectory using linear regression. This regression formulation takes
a window of past user-view orientations as input. During streaming,

Table 1: Variables used in the problem formulation.

xp, j
A binary variable indicating whether to assign an
AdaP-360 configuration p to a view trajectory j.

yp

A binary vector representing whether an AdaP-360
configuration p should be selected, i.e., encoded for
streaming.

sp, j

A variable representing the cost of assigning view
trajectory j to AdaP-360 configuration p. For example,
a weighted sum of the number of pixels in the view
rendered using the low-quality region.

K

An integer limiting the maximum number of AdaP-
360 configurations that can be selected and encoded
for a video segment.

a client requests the adaptive area-of-focus projection whose high
quality region best-matches the user’s predicted view trajectory
when the segment is rendered.

We also note that our linear-regression-based view prediction
is a simple one ś it does not leverage any deep features of the
video content. We show that our proposed AdaP-360 approach
works well even with simple prediction approaches. We expect
better bandwidth savings can be achieved with more-effective view
predictions.

4.2 Adaptive Area-of-Focus Projections

We apply our user-adaptive scheme to three efficient and popular
spherical projections: the equi-angular cubemap (EAC) projection
(currently used by YouTube), the rotated sphere projection (RSP),
and the barrel projection (BRL) (currently used by Facebook). We
refer to the user-adaptive versions of these projections as AdaEAC,
AdaRSP, and AdaBRL, respectively. Figures 1(d), 1(f), and 1(b) illus-
trate these projections.

To create an area-of-focus projection from the RSP and EAC pro-
jections, we sub-sample vertical pixels (with respect to the frame
layout) in the bottom portion (representing the łrear-facingž di-
rection), allowing both top and bottom portions to be laid out in a
single frame while still maintaining the rectangular shape of the
final layout. The BRL projection is an area-of-focus projection by
its definition: it contains a high-quality region covering the cen-
ter [-45°, 45°] pitch portion of the sphere and a low-quality region
covering the remaining areas.

Based on the properties of these projections, we can define
an area-of-focus projection by the equatorial plane of the high-
quality portion and an orientation vector that lies on this equato-
rial plane. We represent the equatorial plane using the plane normal
n, where n is a unit vector. We refer to the orientation vector by the
symbol o. For RSP, a spherical pixel at o is projected to the center
of front-facing band of the layout (the top rectangular section of
the planar image). For EAC, a spherical pixel at o is projected to the
center of the front cube face. For BRL, this pixel is projected to the
center of the equirectangular band.

4.3 Problem Formulation: AdaP-360
Configuration Selection

We address the adaptive area-of-focus projection selection problem
by formulating an optimization problem that takes historical user

views of 360-degree segments as input and returns a set of AdaP-
360 configurations (e.g., (n,o) vectors defining the projection) that
can best serve these historical views. The set of selected AdaP-360
configurations are restricted so that they fit within a pre-defined
server-side storage budget.

User-view history inputs to the algorithm are defined to be tra-
jectories of view orientations for each frame in a video segment.
We represent view trajectories as j = [j(1), j(2), · · · , j(n)], where
j(n) is a quaternion representing the rotation of user’s view at the
nth frame of the video segment. We define the set of past view
trajectories as J . We then consider a discrete set P of candidate
area-of-focus projections by limiting ourselves to configurations
whose high-quality regions perfectly align with a view in J .

Using the variables described in Table 1, we can formulate the
area-of-focus projection selection problem as follows:

minimize:
∑

p

∑

j

sp, jxp, j

subject to:
∑

p

xp, j = 1 ∀j

xp, j ≤ yp ∀p,∀j
∑

p

yp ≤ K

xp, j ∈ {0, 1} ∀p,∀j

yp ∈ {0, 1} ∀p

The formulated optimization problem aims to select the best set
of AdaP-360 configurations such that: (1) each view trajectory of
a video segment must be assigned to exactly one of the selected
configurations; (2) the visual qualities of rendered views are maxi-
mized; and (3) the selected number of AdaP-360 configurations is at
most K (this limit acts as a constraint on the total storage associated
with each segment.)

4.4 Greedy AdaP-360 Configuration Selection

To efficiently select AdaP-360 configurations, we convert the formu-
lation into a set cover problem and use a greedy algorithm to solve
it. In the converted formulation, given past view trajectories (i.e., a
set of items to be covered) and candidate AdaP-360 configurations
that can be used to render view trajectories in high quality (i.e., col-
lections of sets covering items), select K AdaP-360 configurations
(i.e., K sets) such that each past view trajectory (i.e., each item) is
covered by exactly one selected AdaP-360 (i.e., one selected set).

A challenge in this converted formulation is how to determine if
a candidate AdaP-360 configuration can render a view trajectory in
high quality. Intuitively, if a view trajectory can be rendered using
more pixels in the high-quality region of an adaptive area-of-focus
projection, then this user view can achieve better visual quality.
Based on this intuition, we propose the following approach for
approximating visual quality of rendered views. We first create a
spherical mesh with 1280 triangular faces by repeatedly refining
faces of a normalized regular icosahedron. For each candidate AdaP-
360 configuration, we calculate the set of triangular faces whose
centers fall within the high-quality, area-of-focus portion. Similarly,
we can calculate the set of triangular faces required for rendering
each view trajectory. The visual quality of rendered views can thus

1: Generate candidate AdaP-360 configurations, e.g., with dif-
ferent high quality focus areas

2: for all past user trajectories do
3: Compute which candidate AdaP-360 configurations can

render views in the trajectory with high visual quality

4: while the number of selected AdaP-360 configurations is
smaller than K do

5: Select the AdaP-360 configuration that allows the most
remaining view trajectories to be rendered with high quality

Figure 5: Pseudocode for the Greedy AdaP-360 Configura-

tion Selection Algorithm.

be approximated by calculating the percentage of triangular faces
required by a view trajectory that also fall within the AdaP-360’s
high-quality portion. For a candidate AdaP-360 configuration to
cover a view trajectory with high visual quality, we require that the
percentage of triangular faces covered by the high-quality portion
to be higher than Θ ś the goodness threshold. Figure 5 outlines the
greedy algorithm for AdaP-360 configuration selection.

For the remaining trajectories that cannot be łwell coveredž by
the selected K AdaP-360 configurations, we fallback to using the
non-adaptive version. For example, if RSP is used as the underlying
projection, the fallback version would use the same number of
pixels to represent the top and bottom portions of the projection (as
shown in Figure 1(e)), encoding both portions in the same quality.

4.5 Requesting the Best AdaP-360 During
Streaming

A set ofK adaptive area-of-focus projections selected by our greedy
algorithm are pre-computed and stored for clients to download
during streaming. For bandwidth-efficiency, only a single projection
should be requested and downloaded. Ideally, we want to choose
the projection that best matches the user’s future view trajectory.

To do so, the streaming client will first fetch information re-
garding AdaP-360 configurations (e.g., (n,o) vectors that define an
area-of-focus projection) and use this information to calculate the
set of triangular faces whose centers fall within the high-quality
portion. It will then make predictions of the user’s view trajectory
over the requested segment and calculate the set of triangular faces
required by the predicted view trajectory. Finally, it will choose to
download the AdaP-360 whose high-quality portion can cover the
most faces required by the view trajectory.

5 IMPLEMENTATION

AdaP-360 creation and rendering. We modified an open source
library, Transform360 [8]. Transform360 can transform an input
equirectangular frame to the BRL, the adaptive barrel (AdaBRL),
and the offset cubic (OFFSET) projections. To generate our proposed
adaptive projections and baseline projections, we implemented four
additional video filters within the Transform360 library. These
additional filters allow us to transform a standard equirectangular
input frame to RSP, AdaRSP, EAC2, and AdaEAC output frames.

2The Transform360 implementation of the EAC projection does not support baseball
layout of the six cube faces. We implemented a new filter so that the generated EAC
frames are in the same layout as used on YouTube.

All output frames are then encoded as normal video frames using
the encoding pipeline of FFmpeg[9].

To render 360-degree videos given various projections, we cre-
ated another tool, Render3603, based on FFmpeg360 [16] we devel-
oped before. It renders user views of a frame for a series of view
orientations given an input 360-degree video. It can take input
videos encoded using a variety of projections: standard equirect-
angular, RSP, AdaRSP, EAC, AdaEAC, BRL, AdaBRL, and OFFSET.
We encode these rendered views into łview-videosž using lossless
encoding. The rendered łview-videosž allow us to compare the
visual quality, e.g., in terms of viewport peak signal-to-noise ra-
tio (V-PSNR) and viewport video multi-method assessment fusion
(V-VMAF) [1, 6].
Greedy AdaP-360 selection. The greedy AdaP-360 selection al-
gorithm requires two parameters: the coverage threshold, Θ, and
the number of differently-configured area-of-focus projections, K .
We require that for a candidate AdaP-360 configuration to render a
view trajectory with high visual quality, it must cover at least 90% of
the area required by the view trajectory, i.e., Θ = 0.9. We select six
AdaP-360 configurations, i.e., K = 6. With the greedy selection, the
AdaP-360 configuration selected during the first iteration covers
the most trajectories, followed by the second, third, etc.
View prediction. To predict the view trajectory for a future seg-
ment, we trained a simple linear regressor using the scikit-learn
implementation of SGDRegressor [5]. While view prediction is
not the focus of this paper, we show that our proposed AdaP-360
approach is effective even in less-than-ideal client prediction sce-
narios. That is, AdaP-360 can tolerate certain prediction errors as
long as the view is still aligned with high quality portions of the
current AdaP-360 configuration.

6 EVALUATION

We compared our method against other baselines experimentally to
determine the bandwidths needed to achieve equivalent visual qual-
ities. We run these comparisons in three settings. First, we evaluate
the performance in an ideal scenario where future view trajecto-
ries follow the same pattern as past trajectories used in AdaP-360
selection. Next, we evaluate how our AdaP-360 method generalizes
when presented with unobserved user traces. Finally, we evaluate
our method under a realistic streaming setting where the predicted
user-view trajectory determines which version of AdaP-360 config-
urations to download. The realistic streaming setting uses a simple
linear regressor for view prediction.
Dataset.We evaluated our AdaP-360 scheme using two public 360-
degree video head movement datasets [11, 23]. The first dataset
(D1) [11] contains view orientations of 58 users watching 5 different
360-degree videos. These 5 videos in D1 are available in 4K quality.
The second dataset (D2) [23] includes view orientations of 48 users
watching 9 360-degree videos. The 9 videos in D2 are available in
2K quality.

We use these equirectangular videos available in the datasets as
groundtruth videos. For each video, we evaluated the performance
of our proposed method over a randomly selected 10 consecutive
seconds of content. Each video’s 10 seconds content was further
divided temporally into 10 1-second long segments.

3Render360 is available at: https://github.com/bingsyslab/render360-adap360.

https://github.com/bingsyslab/render360-adap360

Our user-adaptive method requires a łtraining setž of past user-
view trajectories. Hence, we used trajectories from 50 users and 40
users in D1 and D2, respectively, as past user-view trajectories to
generate K = 6 AdaP-360 projections. Traces from the remaining 8
users from each dataset are used as our test sets.
Comparative methods. We compared AdaP-360 projections (i.e.,
AdaRSP, AdaEAC, and AdaBRL) against state-of-the-art non-adaptive
projections: the equirectangular projection (EQ), the equi-angular
cubemap projection (EAC), the rotated sphere projection (RSP), the
barrel projection (BRL), and the offset cubic projection (OFFSET)
used in Oculus 360-degree video streaming [28].

The aspect ratio of RSP, EAC and OFFSET videos are 3:2. For
AdaRSP and AdaEAC, when we reduce the number of pixels in the
bottom, low-quality region by half, the aspect ratio becomes 2:1.
To place the main and circular portions of AdaBRL videos on a
same rectangular plane, AdaBRL videos are encoded with 5:2 aspect
ratio. For fair streaming bandwidth comparison, we transcoded
groundtruth videos to various projections with roughly the same
number of pixels. We transcoded videos in D1 to AdaRSP, AdaEAC
and EQ in 2880x1440 resolution, RSP, EAC, and OFFSET in 2520x1680
resolution, and AdaBRL in 3840x1536 resolution. Since groundtruth
videos in D2 are in much lower quality compared to videos in D1
(2K vs. 4K quality), we transcoded videos in D2 to AdaRSP, AdaEAC
and EQ in 1280x640 resolution, RSP, EAC, and OFFSET in 1128x752
resolution, and AdaBRL in 1400x560 resolution.

6.1 Bandwidth Savings

Metrics. To evaluate bandwidth savings of our method, we used the
Bjùntegaard-Delta bitrate (BD-rate) [10] metric, commonly adopted
by the video compression community [13, 26]. BD-rate calculates
the average difference in bandwidth under the same visual quality.
It is derived from the rate-distortion (RD) curve. In our experiments,
łRatež on the RD-curve represents the bandwidth used to download
a video segment. For łDistortionž, we used two visual quality met-
rics: the viewport peak signal-to-noise ratio (V-PSNR) and viewport
video multi-method assessment fusion (V-VMAF). Both visual qual-
ity metrics are calculated using views rendered by the downloaded
video segment and views rendered by the groundtruth video.
Methodology. To create these RD-curves, we encoded videos in
different projections using four quantization parameter (QP) values:
{22, 27, 32, 37}. To obtain the łdistortionž portion of the curve, we
computed V-PSNR and V-VMAF between the views rendered from
client-downloaded projections during streaming and groundtruth
views. These views were rendered with 90° by 90° FoV. For videos
in D1, we generated views with 960x960 resolution. For videos in
D2, given that they are in lower resolution than D1, we considered
views with 560x560 resolution. We computed V-PSNRs only be-
tween the Y luminance component in each rendered view’s YUV
representation. The groundtruth views were rendered from the
original equirectangular videos from two datasets.

6.1.1 Savings under the ideal scenario. The ideal scenario occurs
when future view trajectories follow the past view trajectories. We
thus evaluate BD-rate for all training set users for all videos.

To generate user views for the Ada* methods, we selected the
best among the 6 available adaptive projections to render a given
user’s view of each segment. Figures 6 (a) and 6 (b) show the RD-
curve for 50 training user traces in D1. D2 results are shown in

Figures 6 (g) and 6 (h). Results from both datasets show that Ada*
projections can achieve the same visual quality metrics, V-PSNR
and V-VMAF, with significantly smaller bandwidth compared to
EQ, OFFSET, RSP and EAC projections.

Specifically, the RD-curve of OFFSET is very close to EQ. BD-
rate result shows that, in D1 (D2) OFFSET uses 2.3% (7.9%) more
bandwidth than EQ to achieve the same visual quality. This is be-
cause offset cubic projections used in Facebook’s Oculus streaming
has only a single high-quality direction with a very small pixel-
concentration area. As a result, when the view deviates from the
high-quality direction, the visual quality drops significantly.

BD-rate calculated between AdaRSP and RSP, between AdaEAC

and EAC, and between AdaEAC and EQ show that in D1 (D2), AdaRSP
achieves on average 24.9% (29.5%) bandwidth savings compared to
RSP, AdaEAC achieves on average 22.8% (27.2%) bandwidth savings
compared to EAC, 49.0% (55.4%) savings compared to EQ, and 49.6%
(57.8) savings compared to OFFSET while maintaining the same
visual quality. AdaBRL performs slightly better than BRL but not as
well as AdaRSP or AdaEAC. This performance difference is caused
by the high-quality band of AdaBRL covering more spherical area
compared to AdaRSP and AdaEAC, leading to more unviewed pixels
and lower visual quality.

6.1.2 Savings under the unobserved users scenario. We then evalu-
ate if the set of 6 adaptive projections selected based on past view
history can be used for future user views. Here, we use traces from
the 8 test set users in the datasets and assume that the client-side
view trajectory prediction is perfect.

Figures 6 (c) and 6 (d) show the RD-curve for the 8 test set users
in D1. D2 results are shown in Figures 6 (i) and 6 (j). Since we
assume perfect knowledge of future view trajectory, the client can
download the best AdaP-360 for view rendering. BD-rate results
show that for D1 (D2), on average, AdaRSP can achieve 27.0% (30.3%)
bandwidth savings compared to RSP, AdaEAC can achieve 25.5%
(27.5%) bandwidth savings compared to EAC, 44.9% (55.7%) savings
compared to EQ, 48.0% (58.6%) savings compared to OFFSET while
achieving the same visual quality.

6.1.3 Savings under the client-side prediction scenario. We finally
evaluate if bandwidth savings can be achieved under practical pre-
diction. We consider the 8 test-set users’ view traces and predict
these users’ future view trajectories using our simple linear re-
gression (LR) model. In this scenario, the streaming client requests
and downloads the best (out of 6 available) AdaP-360 based on the
predicted view trajectory.

Figures 6 (e) and 6 (f) show the RD-curve for this scenario for
D1. D2 results are shown in Figures 6 (k) and 6 (l). This BD-rate
result shows that even using a basic prediction method to decide
which future view to render, in D1 (D2), AdaRSP can achieve 22.9%
(26.2%) bandwidth savings compared to RSP, AdaEAC can achieve
20.7% (24.0%) bandwidth savings compared to EAC, 41.5% (53.1%)
savings compared to EQ, and 45.5% (55.7%) savings compared to
OFFSET while achieving the same visual quality.

6.2 Decoding and Rendering Time

We logged the time used to decode a video segment and render
views for given user-view orientations on a Linux computer with
an Intel i7-7700K CPU and an NVIDIA GeForce GTX 1080 GPU. As

0 5 10 15 20 25
Bitrate(Mbps)

30

32

34

36

38

40

Y-
PS

NR
(d
B)

AdaRSP
AdaEAC
AdaBRL
OFFSET

RSP
EAC
BRL
EQ

(a) D1: V-PSNR 50 users

0 5 10 15 20 25
Bitrate(Mbps)

50

60

70

80

90

VM
AF

AdaRSP
AdaEAC
AdaBRL
OFFSET

RSP
EAC
BRL
EQ

(b) D1: V-VMAF 50 users

0 5 10 15 20 25
Bitrate(Mbps)

30

32

34

36

38

40

Y-
PS

NR
(d
B)

AdaRSP
AdaEAC
AdaBRL
OFFSET

RSP
EAC
BRL
EQ

(c) D1: V-PSNR 8 users, perfect prediction

0 5 10 15 20 25
Bitrate(Mbps)

50

60

70

80

90

VM
AF

AdaRSP
AdaEAC
AdaBRL
OFFSET

RSP
EAC
BRL
EQ

(d) D1: V-VMAF 8 users, perfect prediction

0 5 10 15 20 25
Bitrate(Mbps)

30

32

34

36

38

40

Y-
PS

NR
(d
B)

AdaRSP
AdaEAC
AdaBRL
OFFSET

RSP
EAC
BRL
EQ

(e) D1: V-PSNR 8 users, LR prediction

0 5 10 15 20 25
Bitrate(Mbps)

50

60

70

80

90

VM
AF

AdaRSP
AdaEAC
AdaBRL
OFFSET

RSP
EAC
BRL
EQ

(f) D1: V-VMAF 8 users, LR prediction

0 1 2 3
Bitrate(Mbps)

30

32

34

36

38

40

Y-
PS

NR
(d
B)

AdaRSP
AdaEAC
AdaBRL
OFFSET

RSP
EAC
BRL
EQ

(g) D2: V-PSNR 40 users

0 1 2 3
Bitrate(Mbps)

40

50

60

70

80

90

VM
AF

AdaRSP
AdaEAC
AdaBRL
OFFSET

RSP
EAC
BRL
EQ

(h) D2: V-VMAF 40 users

0 1 2 3
Bitrate(Mbps)

30

32

34

36

38

40

Y-
PS

NR
(d
B)

AdaRSP
AdaEAC
AdaBRL
OFFSET

RSP
EAC
BRL
EQ

(i) D2: V-PSNR 8 users, perfect prediction

0 1 2 3
Bitrate(Mbps)

40

50

60

70

80

90

VM
AF

AdaRSP
AdaEAC
AdaBRL
OFFSET

RSP
EAC
BRL
EQ

(j) D2: V-VMAF 8 users, perfect prediction

0 1 2 3
Bitrate(Mbps)

30

32

34

36

38

40
Y-
PS

NR
(d
B)

AdaRSP
AdaEAC
AdaBRL
OFFSET

RSP
EAC
BRL
EQ

(k) D2: V-PSNR 8 users, LR prediction

0 1 2 3
Bitrate(Mbps)

40

50

60

70

80

90

VM
AF

AdaRSP
AdaEAC
AdaBRL
OFFSET

RSP
EAC
BRL
EQ

(l) D2: V-VMAF 8 users, LR prediction

Figure 6: RD-curves constructed using encodings of the all videos in Dataset 1 (D1, left) and Dataset 2 (D2, right) to render

views of 90° by 90° FoV. Two distortion metrics are used: viewport PSNR (V-PSNR) and viewport VMAF [1] (V-VMAF). Top

row: the RD-curve for users whose view history is used for AdaP-360 configuration selection.Middle row: the RD-curve under

perfect client-side view prediction for the 8 users held-out from server-side AdaP-360 configuration selection. Bottom row: the

RD-curve using linear regression (LR) for client-side view-prediction for the remaining 8 users.

video-1 video-2 video-3 video-4 video-5
Videos

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Ti
m

e
(m

s)

AdaRSP
AdaEAC
EQ

Figure 7: Average

per-frame decod-

ing and rendering

time of videos in

Dataset 1.

there are 30 frames in each video segment, we calculate and report
the average per-frame decoding and rendering time. The results
of videos in Dataset-1 are shown in Figure 7. Error bars in this
figure indicate decoding and rendering duration at 2.5% and 97.5%
percentiles. The figure shows no significant difference in decoding
and rendering time among AdaRSP, AdaEAC, and EQ schemes.

7 CONCLUSION

We created a method for generating area-of-focus frames of com-
mon 360-degree video projections that can be adapted, based on user
view histories, to deliver more efficient 360-degree video streams.
Our method is applicable to a wide variety of popular projections
and is simple to understand and implement. We evaluated the ap-
proach on adaptive versions of the BRL, RSP, and EAC projections.
Results from these evaluations show that compared to the equirect-
angular projection, our method can achieve on average 55.4% band-
width savings under ideal conditions and 53.1% savings in a realistic
scenario where a streaming client must predict future user-view
trajectories.

8 ACKNOWLEDGEMENT

We appreciate constructive comments from anonymous referees.
This work is partially supported by National Science Foundation
under grant CNS-1618931.

REFERENCES
[1] 2016. Toward A Practical Perceptual Video Quality Metric.

https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-
quality-metric-653f208b9652.

[2] 2017. Bringing pixels front and center in VR video. https://blog.google/products
/google-vr/bringing-pixels-front-and-center-vr-video/.

[3] 2017. End-to-end optimizations for dynamic streaming. https://code.facebook.co
m/posts/637561796428084/end-to-end-optimizations-for-dynamic-streaming/.

[4] 2017. Enhancing high-resolution 360 streaming with view prediction.
https://engineering.fb.com/virtual-reality/enhancing-high-resolution-360-stre
aming-with-view-prediction/.

[5] 2018. sklearn.linear_model.SGDRegressor. https://github.com/scikit-
learn/scikit-learn/blob/a86709fdc379f7d7db76a75f39572890e4ddcad1/sklearn/li
near_model/stochastic_gradient.py.

[6] 2018. VMAF: The Journey Continues. https://medium.com/netflix-techblog/v
maf-the-journey-continues-44b51ee9ed12.

[7] 2019. Cubic Projection. http://wiki.panotools.org/Cubic_Projection.
[8] 2019. Transform360. https://github.com/facebook/transform360.
[9] 2020. FFmpeg. http://www.ffmpeg.org/.
[10] Gisle Bjontegaard. 2001. Calculation of average PSNR differences between RD-

curves. VCEG-M33 (2001).
[11] Xavier Corbillon, Francesca De Simone, and Gwendal Simon. 2017. 360-degree

video head movement dataset. In Proceedings of the 8th ACM on Multimedia
Systems Conference. ACM, 199ś204.

[12] Xavier Corbillon, Gwendal Simon, Alisa Devlic, and Jacob Chakareski. 2017.
Viewport-adaptive navigable 360-degree video delivery. In Communications (ICC),
2017 IEEE International Conference on. IEEE, 1ś7.

[13] Mario Graf, Christian Timmerer, and Christopher Mueller. 2017. Towards Band-
width Efficient Adaptive Streaming of Omnidirectional Video over HTTP: Design,
Implementation, and Evaluation. In Proceedings of the 8th ACM on Multimedia
Systems Conference. ACM, 261ś271.

[14] Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng Li, and Lei Han. 2018.
Rubiks: Practical 360-Degree Streaming for Smartphones. In Proceedings of the
16th Annual International Conference on Mobile Systems, Applications, and Services.
ACM, 482ś494.

[15] ISO/IEC 23009-1:2014 2014. ISO/IEC 23009-1:2014 Information technology – Dy-
namic adaptive streaming over HTTP (DASH) – Part 1: Media presentation descrip-
tion and segment formats. Standard. International Organization for Standardiza-
tion.

[16] Yao Liu, Chao Zhou, Shuoqian Wang, and Mengbai Xiao. 2019. FFmpeg360 for
360-degree videos: edge-based transcoding, view rendering, and visual quality

comparison: poster. In Proceedings of the 4th ACM/IEEE Symposium on Edge
Computing. 337ś339.

[17] Anahita Mahzari, Afshin Taghavi Nasrabadi, Aliehsan Samiei, and Ravi Prakash.
2018. FoV-Aware Edge Caching for Adaptive 360Â° Video Streaming. In 2018
ACM Multimedia Conference on Multimedia Conference. ACM, 173ś181.

[18] Afshin Taghavi Nasrabadi, Anahita Mahzari, Joseph D Beshay, and Ravi Prakash.
2017. Adaptive 360-degree video streaming using scalable video coding. In
Proceedings of the 2017 ACM on Multimedia Conference. ACM, 1689ś1697.

[19] Stefano Petrangeli, Viswanathan Swaminathan, Mohammad Hosseini, and Filip
De Turck. 2017. An HTTP/2-Based Adaptive Streaming Framework for 360
Virtual Reality Videos. In Proceedings of the 2017 ACM on Multimedia Conference.
ACM, 306ś314.

[20] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018. Flare:
Practical Viewport-Adaptive 360-Degree Video Streaming for Mobile Devices. In
Proceedings of the 24th Annual International Conference on Mobile Computing and
Networking. ACM, 99ś114.

[21] Gary J Sullivan, Jens Ohm, Woo-Jin Han, and Thomas Wiegand. 2012. Overview
of the high efficiency video coding (HEVC) standard. IEEE Transactions on circuits
and systems for video technology 22, 12 (2012), 1649ś1668.

[22] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. 2003.
Overview of the H. 264/AVC video coding standard. IEEE Transactions on circuits
and systems for video technology 13, 7 (2003), 560ś576.

[23] Chenglei Wu, Zhihao Tan, Zhi Wang, and Shiqiang Yang. 2017. A Dataset for
Exploring User Behaviors in VR Spherical Video Streaming. In Proceedings of the
8th ACM on Multimedia Systems Conference. ACM, 193ś198.

[24] Lan Xie, Zhimin Xu, Yixuan Ban, Xinggong Zhang, and Zongming Guo. 2017.
360ProbDASH: Improving QoE of 360 Video Streaming Using Tile-based HTTP
Adaptive Streaming. In Proceedings of the 2017 ACM on Multimedia Conference.
ACM, 315ś323.

[25] Yan Ye, Elena Alshina, and Jill M Boyce. 2017. JVET-G1003: AlgorithmDescription
of Projection Format Conversion and Video Quality Metrics in 360Lib Version 4.
Joint Video Exploration Team (JVET) (2017).

[26] Matt Yu, Haricharan Lakshman, and Bernd Girod. 2015. Content adaptive repre-
sentations of omnidirectional videos for cinematic virtual reality. In Proceedings
of the 3rd International Workshop on Immersive Media Experiences. ACM, 1ś6.

[27] Alireza Zare, Alireza Aminlou, Miska M Hannuksela, and Moncef Gabbouj. 2016.
HEVC-compliant tile-based streaming of panoramic video for virtual reality
applications. In Proceedings of the 2016 ACM on Multimedia Conference. ACM,
601ś605.

[28] Chao Zhou, Zhenhua Li, and Yao Liu. 2017. A Measurement Study of Oculus 360
Degree Video Streaming. In Proceedings of the 8th International Conference on
Multimedia Systems. ACM.

https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/
https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/
 https://code.facebook.com/posts/637561796428084/end-to-end-optimizations-for-dynamic-streaming/
 https://code.facebook.com/posts/637561796428084/end-to-end-optimizations-for-dynamic-streaming/
 https://engineering.fb.com/virtual-reality/enhancing-high-resolution-360-streaming-with-view-prediction/
 https://engineering.fb.com/virtual-reality/enhancing-high-resolution-360-streaming-with-view-prediction/
https://github.com/scikit-learn/scikit-learn/blob/a86709fdc379f7d7db76a75f39572890e4ddcad1/sklearn/linear_model/stochastic_gradient.py
https://github.com/scikit-learn/scikit-learn/blob/a86709fdc379f7d7db76a75f39572890e4ddcad1/sklearn/linear_model/stochastic_gradient.py
https://github.com/scikit-learn/scikit-learn/blob/a86709fdc379f7d7db76a75f39572890e4ddcad1/sklearn/linear_model/stochastic_gradient.py
https://medium.com/netflix-techblog/vmaf-the-journey-continues-44b51ee9ed12
https://medium.com/netflix-techblog/vmaf-the-journey-continues-44b51ee9ed12
http://wiki.panotools.org/Cubic_Projection
https://github.com/facebook/transform360
http://www.ffmpeg.org/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Spherical Projections
	2.2 Bitrate-Adaptive 360-Degree Streaming
	2.3 View Inefficiency in 360-Degree Streaming

	3 Motivation: View Trajectories
	4 AdaP-360: User-Adaptive Area-of-Focus Projections
	4.1 Overview
	4.2 Adaptive Area-of-Focus Projections
	4.3 Problem Formulation: AdaP-360 Configuration Selection
	4.4 Greedy AdaP-360 Configuration Selection
	4.5 Requesting the Best AdaP-360 During Streaming

	5 Implementation
	6 Evaluation
	6.1 Bandwidth Savings
	6.2 Decoding and Rendering Time

	7 Conclusion
	8 Acknowledgement
	References

