
OpTile: Toward Optimal Tiling in 360-degree Video Streaming

Mengbai Xiao∗

George Mason University
mxiao3@gmu.edu

Chao Zhou∗

SUNY Binghamton
czhou5@binghamton.edu

Yao Liu
SUNY Binghamton

yaoliu@binghamton.edu

Songqing Chen
George Mason University

sqchen@gmu.edu

ABSTRACT

360-degree videos are encoded for adaptive streaming by irst pro-

jecting the spherical surface onto two-dimensional frames, then

encoding these as standard video segments. During playback of

these 360-degree videos, the video player renders the portion of

the spherical surface in the direction of the user’s view. These user

viewports typically cover only a small portion of the 360 degree

surface, causing much of the downloaded bandwidth to be wasted.

Tile-based approaches can reduce the wasted bandwidth by cut-

ting video spatially into motion-constrained rectangles. Streaming

logic then only needs to download the tiles necessary to render

the viewport seen by the user. Existing tile-based approaches cut

360-degree videos into tiles of ixed sizes. These ixed-size tiling ap-

proaches, however, sufer from reduced encoding eiciency. Tiling

cuts away portions of the video that can be copied by the encoder

from adjacent frames or within the current frame that are needed

for efective video compression.

In this paper, we propose a scheme called OpTile. This scheme

tiles a projected 360-degree segment by irst estimating per-tile

storage costs, then solving an integer linear program (ILP) to ob-

tain an optimal, potentially non-uniform tiling. The ILP objective

considers both content-speciic characteristics and empirical distri-

butions over user views of the segments. Using a randomly selected

training/testing set split, we show that if a streaming algorithm can

perfectly predict the user head orientation, our proposed scheme

can save up to 73% of downloaded data compared to the non-tiling

scheme and up to 44% compared to the best-performing uniform

tiling methods.

ACM Reference Format:

Mengbai Xiao, Chao Zhou, Yao Liu, and Songqing Chen. 2017. OpTile:

Toward Optimal Tiling in 360-degree Video Streaming. In Proceedings of

MM ’17, Mountain View, CA, USA, October 23ś27, 2017, 9 pages.

https://doi.org/10.1145/3123266.3123339

∗The irst two authors made equal contributions to this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’17, October 23ś27, 2017, Mountain View, CA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4906-2/17/10. . . $15.00
https://doi.org/10.1145/3123266.3123339

1 INTRODUCTION

Virtual Reality (VR) devices, such as Samsung’s GearVR and the

HTC Vive, are moving increasingly toward the mainstream. These

devices support a number of popular immersive experiences in-

cluding interactive gaming environments, rendering and streaming

ł360-degreež videos. Unlike standard streaming video, 360 degree

videos consist of frames that capture images fully surrounding a

position in space. The VR device allows a user to select a view from

the 360-degree by changing the orientation of his or her head and

rendering the view at this chosen orientation. This mode of control

simulates a real-life view of the surrounding environment.

To support 360-degree video streaming, video players typically

download the entire encoded spherical view. Video players, how-

ever, often only render a small portion of the frame in the direction

of the user’s view. For example, viewports frequently encompass

100-degree horizontal by 100-degree vertical ield of view (FOV).

A FOV centered at < yaw = 0,pitch = 0 > requires about 14.3% of

all pixels encoded in the equirectangular frame.

This discrepancy between the downloaded and viewed data

touches on a core problem in 360-degree video streaming: cur-

rent production schemes download an entire 360-degree frame, but

users consume only a small portion of this data.

This limitation of current streaming platforms has real-world

consequences for potential 360-degree streaming users, potentially

preventing wider adoption. Because i) VR devices must be placed

in close proximity to the user’s face, ii) the viewed portion of 360-

degree videos does not take advantage of the full frame, and iii)

stereo images halve the available resolution, the minimum quality

needed to deliver VR users an adequate 360-degree video viewing

experience is 4K. While the minimum recommended connection

speed for viewing 4K resolution video is 25Mbps [7], the average

broadband connection bandwidth in the USA is only 15.3 Mbps

according to Akamai [2]. This could leave VR-360-degree video

streaming out of reach for large populations of users.

Previously-proposed methods to address the 360-degree video

wasted-bandwidth problem involve tile-based schemes. Here, 2D-

projections of the 360-degree frame are broken up into rectangular

tiles. These tiles are encoded as dynamic adaptive streaming (DASH)

segments, and a subset of tiles from the full 360-degree segment

can be served to a user. These schemes have the potential to sig-

niicantly reduce the amount of bandwidth needed for 360-degree

video streaming. However, they sufer from two serious drawbacks:

i) tiling reduces the eiciency of video encoding. These methods

encode frames by referencing areas of a past or future video frames.

Tiling reduces the pool of such reference sub-images, reducing

https://doi.org/10.1145/3123266.3123339
https://doi.org/10.1145/3123266.3123339

encoding efectiveness. ii) the larger number of tiles increases the

diiculty of the segment selection problem for streaming clients.

Clients now must select a quality level for all tiles in a segment (in-

cluding the possibility of a null quality level if a tile is not needed).

In contrast, non-tile-based streaming clients must only select a

single quality level.

In this work, we propose OpTile, a tile-based scheme that ad-

dresses the irst general concern (reduced encoding eiciency) about

tile based methods. We formulate an optimization problem (an in-

teger linear program) that attempts to tile the 2D-projection of a

360-degree segment. The optimization problem presents a tradeof

between the costs of storing a set of tiles and the costs of serving

sets of tiles that cover possible views of the segment. These views

are weighted according to the distribution of the likelihood that

they are selected by a user. Evaluation results show that under per-

fect prediction of user head orientation, OpTile can save up to 73%

downloaded volume compared to the baseline non-tiling scheme,

and up to 44% compared to best-performing ixed tiling schemes.

2 MOTIVATION AND RELATED WORK

In this section we explore the space of solutions for delivering

360-degree video streams. To do so, we also present background

information needed to understand how these solutions operate.

2.1 Two-dimensional Video Encoding

Current 360-degree streaming systems all take advantage of the

eicient encoding/decoding ecosystem on planar videos supplied by

the families of popular coding standards including H.264 AVC [25]

and HEVC [23] standards and their successors.

These standards encode videos using two primary steps. We

present simpliied versions of these steps to highlight areas rele-

vant to this work. First for every łblockž1 in a frame image, the

coding algorithm searches for similar blocks either within parts

of the current frame that would be available to the decoder (that

is, in already-decoded portions of the current frame) or in nearby

frames that would be bufered by the decoder. When the encoder

inds a block in a nearby frame that closely matches the current

block, it encodes the position of this similar block in a łmotion

vector.ž Next, the encoder computes the diference between pixels

in the current block and the reference block, and encodes this dif-

ference by applying a transform (for example, the discrete cosine

transform), quantizing the transformed coeicients, and applying

lossless entropy encoding (for example, Hufman coding) on the

remaining sparse set of coeicients.

We describe these encoding steps because their eiciency can

be impacted by how 360-degree video frames are represented. For

example, tile based techniques can reduce the number of blocks

available for copying (thus increasing the distance of the block

match), and diferent 360-degree to planar projection can afect the

sparsity of the coeicients output by coding transforms. Factors

like these can reduce video encoding eiciency.

1The deinition of łblockž can vary across codec families, but similar concepts exist in
most codecs.

2.2 Projecting 360-degree Surfaces onto the

Plane

As methods for directly encoding 360-degree images and videos

are not yet mature, 360-degree streaming systems currently take

advantages of two-dimensional video encoding technology by irst

projecting the 360-degree spherical surface onto a rectangular im-

age.

Projections used most frequently today are the equirectangu-

lar [3] and cubic projections [22]. The equirectangular projection

is both the simplest and currently the most popular, used by most

360-degree video streaming service providers including YouTube.

With equirectangular projection, pixels on the spherical sur-

face are mapped to the rectangular surface based on their yaw

and pitch angle values on the sphere (the yaw and pitch values

of a point on a sphere are determined by applying the yaw mo-

tion irst and the pitch motion second). Given an equirectangular

image with size ofwidth × heiдht , a pixel on the rectangular sur-

face, (x ,y), is projected from a pixel on the spherical surface with

< yaw = (x/width − 0.5) × 360,pitch = (0.5 − y/heiдht) × 180 >.

For example, a pixel at the center of the equirectangular surface is

projected from < yaw = 0,pitch = 0 > on the sphere.

To create a cubic projection of a spherical surface, we irst

position the sphere within a cube. Rays are then projected outward

from the center of the sphere. Each ray intersects with both a

location on the spherical surface and a location on a cube face. We

construct a cubic projection by taking the ray associatedwith a pixel

on a cube face and inding the corresponding pixel on the spherical

surface. For example, a ray pointing to the pixel at the center of the

cube’s front face intersects with the sphere at < yaw = 0,pitch =

0 >, so we would copy the pixel value at < yaw = 0,pitch = 0 > to

this front-face pixel. For encoding, the six cube faces are arranged on

a planar image and compressed using standard video compression

techniques. The cubic projection is used by Facebook [10].

2.3 360-degree Video Streaming

After projecting the sphere to a two-dimensional image, Dynamic

Adaptive Streaming over HTTP (DASH) [18] can be supported

as it is for standard videos. Speciically, the full sequence of two-

dimensional frames is partitioned into temporal segments, and

these segments are then encoded at multiple bitrates. During play-

back, the video player adaptively selects the quality level of video

segments as playback progresses.

As mentioned earlier, directly serving equirectangular or cubic

projected frames through DASH can waste signiicant amounts

of network bandwidth. Projected frames encode the full spherical

surface but a user’s ield of view (FOV) typically covers only a small

portion of this surface. This discrepancymeans a signiicant amount

of transferred frame data is often never rendered. For example, a

viewport of 100 degrees horizontal and vertical FOV centered at

< yaw = 0,pitch = 0 > covers approximately 14.3% of the pixels

in an equirectangular frame.

Two main families of techniques have been proposed to address

this ineiciency. The irst family of approaches encodes the full

spherical surface in each segment but quality is decreased in re-

gions outside of an expected ield of view. We call this family of

approaches łoriented projections.ž The second group of approaches

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

video#1 video#2 video#3 video#4

N
o
rm

a
liz

e
d
 F

ile
 S

iz
e

origin
640x360

320x180
213x120

160x90

(a) 720p

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

video#1 video#2 video#3 video#4

N
o
rm

a
liz

e
d
 F

ile
 S

iz
e

origin
640x360

320x180
213x120

160x90

(b) 1080p

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

video#1 video#2 video#3 video#4

N
o
rm

a
liz

e
d
 F

ile
 S

iz
e

origin
640x360

320x180
213x120

160x90

(c) 4K

Figure 1: Increase in video ile size due to ixed tiling.

splits the 360-degree view into spatial segments, tiles, and allows

each of these tiles to be downloaded at varying qualities. We call

these łtile-basedž approaches.

2.3.1 Oriented Projections. The pyramidal projection [9] and

the ofset cubic projection [28], both proposed by Facebook, are

examples of schemes that encode the full 360-degree surface but

vary the quality over this surface to reduce the amount of bandwidth

devoted to regions that a user is unlikely to view.

In the pyramidal projection, the sphere is wrapped in a pyramid

in a similar manner to the cubic projection’s construction. Multiple

pyramids are encoded, with each pyramid oriented so that the

base is directed toward an expected viewing location. The pyramid

geometry ensures that more pixels are devoted to a given angular

area in the direction of the pyramid base.

The idea of the ofset cubic projection is similar to the pyramid

projection. The ofset cube distorts the spherical surface to con-

centrate pixels toward a given orientation. The front face of the

cube is then directed toward this orientation. Recently, Zhou et al.

reverse-engineered the ofset cubic projection used by Facebook

for Oculus VR streaming [28]. The authors show that as long as

the user’s head direction is within 40 degrees of the ofset cube

orientation, views can be rendered with qualities as good or better

than an equirectangular projection with more than twice the pixel

resolution.

Despite this improvement in pixel-level eiciency, these ap-

proaches have some signiicant disadvantages:

Increased storage. Ofset cubes and pyramids are oriented toward

speciic directions. To produce good visual quality for all possible

user’s head directions, many such orientations must be stored. For

example, Facebook encodes 22 ofset cube orientations for each seg-

ment. Given that Facebook also uses four quality levels, a total of

4 × 22 = 88 versions of the same video must be encoded and stored.

This incurs signiicant storage overhead both at the datacenter and

within CDN and proxy servers.

Reduced encoding eiciency. Although the ofset cubic projec-

tion can signiicantly improve pixel-level eiciency, this eiciency

does not always translate to equivalent levels of bandwidth ei-

ciency. For example, Zhou et al. have shown that encoded ofset

cubic segments that contain less than half pixels than the equirect-

angular projection can only result in 5.6% to 16.4% average savings

in video bitrate [28]. These poor compression ratios are likely a re-

sult of the distortion applied to the spherical surface. This distortion

could cause motion estimation, the key to inter-frame compression,

less efective.

2.3.2 Tile-based Approaches. In tile-based approaches, the two-

dimensional projection is divided spatially into rectangular tiles.

Tiles are then independently encoded and can be downloaded in-

dividually by a streaming algorithm. During streaming, the video

player downloads tiles so that the user’s predicted viewports over

the segment duration are covered by high-quality tile-segments [12].

Tiles in regions that the user is not expected to observe can be

downloaded at lower qualities, if desired, to account for unexpected

changes in view orientations by the user.

Existing tile-based streaming prototypes mainly use ixed-tiling:

video frames are cut evenly intom × n uniform tiles, or cut into

tiles with sizewidth_split ×heiдht_split each [6, 8]. Temporal seg-

ments in tile based schemes include a ixed number of frames, as in

standard DASH implementations. Recently, Spatial Representation

Description (SRD) [21] has been proposed as an amendment to the

MPEG-DASH standard. SRD can be used to describe the spatial

relationship among tiles that belong to the same temporal video

segment within the DASH MPD ile. This update in the MPEG

standard has been used by many tile-based streaming schemes [13ś

17, 19] and is expected to make tile-based streaming more practical

for deployment in production streaming systems. Besides DASH,

Nasrabadi et al. proposed to use Layered Video Coding (LVC) to

encode tiles in diferent quality levels [24].

Tile-based approaches can improve eiciency over both oriented

projections and basic, un-oriented schemes: i) There is no need to

store segments for multiple user orientations. ii) Tile based schemes

need only download tiles covering the users’ viewport.

However, tile-based schemes are impeded by reduced encod-

ing eiciency. Splitting frames into tiles can reduce video coding

eiciency, causing larger overall storage requirements, and poten-

tially larger bandwidth requirements, in certain circumstances, than

standard projections. This reduction in encoding eiciency occurs

because motion vectors that reference the best block matches in

the full segment can be cut by tile boundaries.

To understand the impact of tiling on video encoding eiciency,

we selected four monoscopic 360 degree videos from YouTube. For

each video, we prepared three versions with diferent resolutions:

720p (1280 × 720), 1080p (1920 × 1080) and 4K (3840 × 2160). To

guarantee the same encoding parameters, we used FFmpeg [4] to

re-encode all videos. We also removed the audio stream. We cut the

videos spatially into tiles of ixed resolutions of 640× 360, 320× 180,

213 × 120, and 160 × 90. We then compared the resulting tile sizes

with the size of original, non-tiled videos. The results are shown in

Figure 1. For all four testing videos, video sizes become larger as the

number of tile-pixels decreases. The same trend exists regardless

of video resolution. This trend is both reasonable and expected.

Smaller tile size means more łcutsž, leading to more sub-optimal

motion vectors and residuals and less eicient video compression.

Focusing on the encoding eiciency, Zare et al. suggested using

motion-constrained tile sets (MCTS) [27]. An MCTS contains all

tiles in a single column.Within anMCTS, tiles in the top and bottom

rows can be predicted from the tile in the middle. Since MCTSs are

cut at ixed positions, content-speciic characteristics and typical

view patterns are not taken into account. Yu et al. proposed to split

equirectangular representation horizontally into tiles and formulate

a multi-dimensional, multiple-choice knapsack problem to decide

the resolution and bitrate for each horizontal tile [26]. However,

due to the high computation complexity, only the irst video frame

is considered in the problem formulation. In addition, Yu et al.’s

formulation does not take into account user behavior that would

make eicient encoding of one portion of the 360-degree view more

important than another.

3 DESIGN OF OPTILE

We propose OpTile, a tile-based approach to the 360-degree stream-

ing problem. OpTile attempts to address some of the shortcomings

of the ixed tiling approaches. Namely, that ixed tiling schemes

increase the storage space per pixel of the 360-degree view. As

mentioned earlier, this encoding ineiciency occurs as a result of

reducing the available blocks that can be copied compared to the

full segment.

Intuitively, compared to a ixed tiling scheme, we would like to

be able to increase some of the tile sizes so that the segments associ-

ated with these tiles can capture similar blocks needed for eicient

coding. However, we would still like tiles to split the 360-degree

frame so that it is possible to avoid transferring unviewed portions

of the segment. Understanding where these splits would be most

useful requires some information over the basic 360-degree setting.

To understand which spatial areas of a segment can be eiciently

encoded independently, we need information about the storage

sizes of tiles with diferent dimensions. To understand where it is

best to cut the 360-degree frame, we need information about user

preferences of sequences of viewports across the segment.

We capture these competing concerns of encoding eiciency

versus wasted data in an integer programming objective that con-

siders a distribution over all possible views of a segment. Each

possible view of the segment can be covered by diferent combina-

tions of tiles. Our objective chooses a single covering of tiles for a

segment that minimizes the total transferred bandwidth over this

distribution of views over a ixed time period.

A separate portion of the objective considers the cost of storing

the representation over this ixed time period. This storage portion

of the objective competes with the downloaded bandwidth portion

of the objective. For example, if an unpopular video is viewed only

once in a year, then we would prefer a compact representation

where we could expect to send the user more unviewed pixels.

3.1 Problem Formulation

Table 1 deines a few terms and variables used in our problem for-

mulation. To aid in describing the problem we irst present a sample

Table 1: Deinition of terms and variables used in this paper.

segment

A contiguous temporal subset of a video that

can be downloaded as a single unit in dy-

namic adaptive streaming.

basic

sub-rectangle

The smallest spatial division of a segment that

can be downloaded during video streaming.

Segments are partitioned spatially into rect-

angles to allow iner spatial granularity when

downloading portions of a 360 degree view.

solution

sub-rectangle

Any rectangular portion of the segment that

can be constructed of one or more basic sub-

rectangles.

x
A binary vector indicating the presence of a sub-

rectangle in the solution.

c (stor)
A vector with cost associated with storing each sub-

rectangle.

c (view)
Given a distribution over user viewports in a seg-

ment, an element of c (view) is the expected down-

loaded bytes of the associated sub-rectangle.

α

Weight assigned to c (view) in order to control the

relative cost of storage compared to transferring a

segment. It also accounts for the popularity of a seg-

ment.

(0,1)(0,0)

(1,1)(1,0)

Figure 2: One rectangular segment partitioned into 4 basic

sub-rectangles.

(a) (b)

(c) (d)

(e)

(f) (g) (h) (i)

(0,0) (0,1) (0,0) (0,1)

(0,1) (0,1)(0,0) (0,0)

(1,0) (1,1) (1,1) (1,1) (1,1)(1,0) (1,0) (1,0)

Figure 3: All 9 possible sub-rectangles that can be con-

structed if we partition a rectangle into two-by-two basic

sub-rectangles.

use case. For this case, we partition a rectangular segment into four

basic sub-rectangles. These basic sub-rectangles are arranged and

indexed as shown in Figure 2.

Figure 3 shows the nine solution sub-rectangles can occur within

this two-by-two rectangle: four - 1× 1, two - 2× 1 , two - 1× 2, one

- 2 × 2. We represent the presence of each of these rectangles in our

solution with a binary vector x as follows:

[1 × 1 at (0,0), 1 × 1 at (0,1), 1 × 1 at (1,0),

1 × 1 at (1,1), 1 × 2 at (0,0), 1 × 2 at (1,0),

2 × 1 at (0,0), 2 × 1 at (0,1), 2 × 2 at (0,0)] ,

where łat (0,0)ž indicates that the top left corner of the rectangle is

located at basic sub-rectangle (0,0).

For x to be valid, every basic sub-rectangle must be covered

exactly once by sub-rectangles encoded in x . For example, [0, 0, 0,

0, 1, 1, 0, 0, 0] is valid, including tiles e and д in the solution. On the

other hand, [0, 0, 0, 1, 1, 1, 0, 0, 0] is not valid as basic sub-rectangle

(1,1) is covered twice in this solution. [0, 0, 0, 1, 1, 0, 0, 0, 0] is also

not valid as basic sub-rectangle (1,0) is not covered.

We have a storage cost vector, c (stor) . This vector is the same

length as the binary vector representing our solution. Each element

of this vector is an estimate of the cost incurred including the

corresponding sub-rectangle in the solution.

We also have to account for a network bandwidth cost for deliv-

ering a sub-rectangle. To do so, we need to account for all possible

views of the 360-degree surface that can be delivered. To simplify

the problem, we discretize all possible views of a segment into a set

of sizeV . Each element of the set represents the event that a unique

subset of basic sub-rectangles were displayed to a user who viewed

a segment of 360-degree video. Note that the area of a video viewed

in a segment can encompass areas from more than one viewing

angle. For example, if the segment duration is one second, then a

user could pan across this one-second of content. We associate a

probability with each of theV segment view elements, [p1, . . . ,pV].

We consider also the cost of downloading a view, v , for a given

solution, as the amount of data that needs to be downloaded for

this view. This quantity can be expressed as

x⊤diag(dv)c
(stor) (1)

dv is a binary vector that selects all sub-rectangles (according to

the representation scheme described above for vector x) that cover

the view, v . For example, if the two-by-two rectangle described

above represents an equirectangular encoding of the 360 degree

sphere, and we have a view at < yaw = 0,pitch = 90 > - top of

the equirectangular image, then the vector dview−(0,90) will be a

length 9 vector: [1, 1, 0, 0, 1, 0, 1, 1, 1], indicating tiles a, b, e , д, h,

and i contain basic sub-rectangles required for rendering the view.

Equation 1 thus can be interpreted as irst selecting the subset of

sub-rectangle costs covered by the segment view, v , then selecting

a further subset of costs given a solution x .

Given a distribution over user viewports in a segment, an element

of c (view) is the expected downloaded bytes of the associated sub-

rectangle.

c (view)
=

∑

v

pvdiag(dv)c
(stor) (2)

Finally, we encode the basic sub-rectangle coverage constraints

for the optimization problem in a matrix, A. A is a binary matrix

whose columns hold information about the basic sub-rectangles that

a given solution sub-rectangle covers. For a two-by-two segment

rectangle,A has four rows (width×heiдht of the segment rectangle)

and nine columns (the number of solution sub-rectangles). The

contents of A for the 2 × 2 example is shown below:

Position a b c d e f д h i

(0,0) 1 0 0 0 1 0 1 0 1

(0,1) 0 1 0 0 1 0 0 1 1

(1,0) 0 0 1 0 0 1 1 0 1

(1,1) 0 0 0 1 0 1 0 1 1

We construct an integer linear program (ILP) for this problem as

follows:

maximize: (−c (stor) − αc (view))⊤x

subject to: Ax = 1

xi ∈ {0, 1} ∀i

where 1 is a vector of 1’s with 4 (the number of basic sub-rectangle)

elements. The storage cost c (stor) can be interpreted as the mon-

etary cost required for storing the sub-rectangles of a segment

over a time interval ∆t . The view downloading cost c (view) can

be interpreted as the monetary cost required for transferring all

sub-rectangles required for a view. α controls the relative cost of

storage compared to transferring a segment. It should also account

for the popularity of a segment. That is, α should be proportional

to the number of times we expect the segment to be downloaded in

the time interval ∆t . We expect α can be estimated with reasonable

accuracy from empirical measurements.

A linear program (LP) can be constructed by relaxing the con-

straint xi ∈ {0, 1}∀i to 0 ≤ xi ≤ 1∀i . Solutions to the linear program

are integral for all our experimental setups. These solutions can

be computed for an x with 33,516 variables in 7 to 10 seconds on a

single CPU core. Please see Section 4 for details.

3.2 Cost Vector Construction

To construct the integer linear program, we need to irst construct

the storage cost vector, c (stor) . However, there exists O (n2) sub-

rectangles, wheren is the number of basic sub-rectangles. Therefore,

it is not feasible to encode every sub-rectangle to obtain the stor-

age cost. To this end, we propose to exploit the strong correlation

between video compression and motion estimation to predict the

values of c (stor) .

Given a video, we irst temporally divide it into segments of one

second long each. Each segment is set to include only 1 GOP. We

refer the size of a segment as Sor iд . We then extract all motion vec-

tors in every segment for later analysis. We then cut the segments

spatially into basic sub-rectangles. Each such basic sub-rectangles

include 4× 4 = 16 macroblocks (i.e., 64× 64 pixels). We encode each

basic sub-rectangles independently and refer the size of each basic

sub-rectangle as Si . By analyzing the motion vector information,

we can infer how many original motion vectors pointing into a

basic sub-rectangle i should be relocated if this basic sub-rectangle

i is encoded independently. We denote this as ri . We calculate the

storage overhead per motion vector as: o =
∑
i Si−Sor iд∑

i ri
, the overall

increase in storage divided by the number of motion vectors inter-

sected by the basic sub-rectangle boundaries. If basic sub-rectangles

are łmergedž into a bigger sub-rectangle, t , we usemt =
∑
i ∈t ri−rt

to denote the number of motion vectors that no longer need to be

relocated due to the merge operation, where i ∈ t indicates basic

sub-rectangle i resides in t .

To estimate the size of an arbitrary sub-rectangle t , we used the

following ive features:
∑
i ∈t Si ,

∑
i ∈t ri ,mt , o, and n, the number

of basic sub-rectangles inside t .

We created a tile size dataset of 6, 082 samples from four mono-

scopic 360-degree videos. Each of these four videos are encoded in

two resolutions: 1920 × 960 and 3980 × 1920. To generate a tile, we

randomly selected a segment from a video, a tile position (encoded

Table 2: MLP-based tile size prediction: results of four-fold

cross validation.

Video R2 median absolute error (%)

Video 1 0.993 2.91

Video 2 0.987 5.09

Video 3 0.984 8.36

Video 4 0.992 3.65

Overall 0.989 4.72

as the left top position of the tile), and the tile width and height. We

set a maximum tile size of 12× 12 basic sub-rectangles. For each se-

lected tile, we constructed a dataset element by irst calculating the

ive-element feature vector, then encoded the tile’s video segment

using FFmpeg to obtain the space needed to store this segment.

We use a multi-layer perceptron (MLP) [11] (also known as an

artiicial neural network, ANN) approach to estimate tile sizes. Our

MLPs were conigured to include a single 50-node hidden layer with

the ReLU activation function. Training proceeded for 300 iterations

using L-BFGS [20].

To evaluate the MLP-based prediction, we use four-fold cross-

validation. In each fold, we train the MLP on tiles from three videos

and use the trained model to predict tile sizes of the fourth video.

Table 2 shows the R2 and the median absolute error (in %) results.

Over all four folds, the median absolute prediction error is smaller

than 5%.

4 IMPLEMENTATION

Figure 4 shows the overall worklow of OpTile. It irst temporally

divides the video into 1-second segments. For each segment, we

solve an integer linear program to determine the optimal tiling

strategy.

To construct the ILP, we estimate the storage costs of each tile,

c (stor) , using our neural network model, as well as a known set of

views, d , and their probability distributions, p, to estimate the view

downloading cost c (view) . When constructing matrix A, we limit

the maximum tile size to 12 × 12 basic sub-rectangles. For example,

if we set the basic sub-rectangle to contain 64 × 64 pixels, then the

maximum allowed tile size is 768 × 768 pixels.

To solve the integer program, we use the GNU Linear Program-

ming Kit (GLPK) solver 4.61 [5]. We encode all possible solution

sub-rectangles (i.e., all tiles not bigger than the maximum allowed

tile size) into a binary vector x , representing the solution. Dur-

ing our experiments, we used a desktop machine with an Intel(R)

Core(TM) i5-6600 3.30GHz CPU. GLPK can compute the optimal

solution for a vector x with 33,516 variables in 7 to 10 seconds on a

single CPU core.

The binary solution produced by GLPK indicates whether a pos-

sible sub-rectangle should be included in the solution. Based on this

solution, we divide the segment spatially into tiles and use FFmpeg

to encode these tiles with the same x264 encoding parameters. The

same procedure is repeated for all temporal segments of a video.

Table 3: Average number of tiles in a segment per video.

Resolution: 1920 × 960

Video
OpTile ixed cut

α=0 α=1 α=1000 ix64 ix128 ix256 ix512
diving 7 31 87 450 105 21 3
paris 6 17 50 450 105 21 3
r-coaster 6 17 50 450 105 21 3
time 6 19 59 450 105 21 3
venice 7 19 57 450 105 21 3

Resolution: 3840 × 1920

Video
OpTile ixed cut

α=0 α=1 α=1000 ix128 ix256 ix512 ix1024
diving 6 49 149 450 105 21 3
paris 6 17 50 450 105 21 3
r-coaster 7 32 93 450 105 21 3
time 7 34 103 450 105 21 3
venice 7 41 112 450 105 21 3

5 EVALUATION

We compare OpTile against a variety of ixed-tiling strategies as well

as against the non-tiled, full equirectangular projection. All tiling

strategies use motion constrained tiling that can reduce the video

compression eiciency. We focus on the following two evaluation

metrics: (i) server-side storage requirements and (ii) the number of

bytes downloaded by the streaming client.

To generate pv and dv as required by the integer program, we

use user head movement data from the 360-degree videos head

movements dataset [1]. This dataset contains head movement data

of 58 users watching ive monoscopic 360-degree videos in head-

mounted displays. We download the ive videos used in the tests

and extract the corresponding portion of the video users watched

during the tests, e.g., 80 seconds from each video. These videos are

encoded using the equirectangular projection. For each video, we

consider two resolutions: 1960 × 960 and 3840 × 1920. For videos

in 1920 × 960, we set the basic sub-rectangle to contain 64 × 64

pixels. For videos in 3840 × 1920, we set the basic sub-rectangle

size to 128 × 128 pixels in order to limit the number of variables

in the integer program. We temporally segment these videos into

segments of 1-second long each. For each temporal segment in a

video, we generate the features required for the neural network

model, i.e., <
∑
i ∈t Si ,

∑
i ∈t ri ,mt , o, and n>, and use these features

to predict storage sizes of all possible tiles, i.e., c (stor) .

We randomly select a set of 40 users from the dataset. To generate

the view distribution, we assume 100-degree horizontal and vertical

FOV and use the head orientation of these 40 users to generate pv
and dv for each temporal segment. That is, our tiling decision is

made based on content characteristics of each segment as well as

the empirical view pattern of 40 users.

We set α = 0, 1, and 1000 in our integer programming objective

to evaluate the performance as the view downloading cost takes

diferent weights in the optimization. We then cut each temporal

segment spatially based on the integer program’s solution. For

comparison, we also cut the segments into ixed tile sizes. We refer

to these cutting schemes as łixed cutž. We consider a total of four

łixed cutž schemes. For videos in the resolution of 1920 × 960, tile

sizes are 64 × 64, 128 × 128, 256 × 256, and 512 × 512. We refer

to these ixed tiling schemes as ix-64, ix-128, ix-256, and ix-512,

respectively. For videos in the resolution of 3840 × 1920, we cut

A segment in a
360 degree
video in any

projection (e.g.,
equirectangular,

cube, etc.)

Extract
motion vector

Encode all basic
sub-rectangles

to get their sizes

Estimate costs c, i.e.,
sizes of all possible

sub-rectangles using
motion vector and sizes
of basic sub-rectangles

Integer
program

Encode solution
sub-rectangles

calculated from the
integer program

ca cecb

cc cd cf

cg ch ci

pv of each of the V segment view elements,
dv that selects all rectangles that overlap with view v.

Figure 4: Overall worklow of OpTile, our proposed optimal 360-degree video tiling system.

them into 128×128, 256×256, 512×512, and 1024×1024 tiles. Table

3 shows the average number of tiles in a segment of a video as cut

by OpTile as well as ixed tiling schemes. Note here that since we

constrain the maximum tile size to 12 × 12 basic sub-rectangles,

OpTile cuts a segment into at least 6 tiles.

5.1 Server-side Storage Size

We irst evaluate the storage volume required for diferent cut-

ting schemes. For each temporal segment, we sum up the storage

sizes of all its tiles and compare this total size against the original,

non-tiled segment size. The results are shown in Figure 5. The x-

axis represents diferent videos and the y-axis shows the mean of

normalized storage size of all segments in a video. Columns with

diferent patterns indicate diferent tiling schemes. In this igure,

origin means the original, non-tiled scheme, α =m represents our

OpTile schemes when setting the weight of view downloading cost,

c (view) , asm, and ix-n is the ixed tiling scheme. Error bars show

the 95% conidence interval.

We can see that across all videos in both resolutions, OpTile with

α = 0 results in roughly the same video size as the original, non-tiled

video segment. This scheme sometimes leads to slightly smaller

segment sizes than the original segment due to lossy compression

during tiling. Note that since all tiling operations are conducted

using the same video encoding parameters in both our schemes

and the standard solutions, the lossy compression introduced due

to re-encoding does not afect the fairness of our comparison.

If we set the weight of view downloading cost α higher, to 1000,

the storage size of our scheme slightly increases. Storage size of

ixed cutting schemes also increases as tile sizes get smaller. For

videos in 1960 × 960, OpTile always requires smaller storage than

ixed 64 × 64 and 128 × 128 schemes. For videos in 3820 × 1920,

OpTile always requires smaller storage than ixed 128 × 128 and

256 × 256 schemes.

5.2 Client-side Downloaded Volume

Next, we compare the number of bytes downloaded by the client

when tiles are cut using our OpTile schemes versus using the ixed

cutting schemes. Since we have used view distributions from a ran-

domly selected set of 40 users to construct the integer programming

problem, we use the remaining 18 users in the dataset to evaluate

the network performance.

5.2.1 Perfect Prediction. For both our OpTile schemes and the

ixed cutting schemes, we irst assume that the client can make

perfect prediction of user’s head orientation and only download

the required tiles. That is, we evaluate the client’s downloading

volume when no downloaded tiles are wasted (i.e., downloaded but

not rendered during playback).

The results are shown in Figure 6. In this igure, we normalize the

downloaded bytes against the number of bytes downloaded without

tiling. By incorporating the view downloading cost into the integer

programming objective and increasing the associated weight α ,

the downloading volume can be greatly reduced. When α = 1000,

OpTile always performs the best, resulting in the least downloading

volume. Compared to the original scheme without tiling, OpTile

can save 62% to 71% downloading volume for 1920 × 960 videos,

64% to 73% downloaded volume for 3840 × 1920 videos. Compared

to the best-performing ixed tiling scheme, OpTile can reduce the

downloaded volume by 16% to 44% for 1920 × 960 videos, 11% to

34% for 3840 × 1920 videos.

For the ix-n schemes, no scheme performs the best for all videos.

Small tiles incur high storage overhead, but deliver a small number

of pixels per tile, reducing the number of wasted pixels (i.e., pixels

that are downloaded in a tile but never rendered), while large tiles

result in the opposite behavior. Furthermore, we see very high

variations in normalized downloaded volume across two videos.

These variations are due to the high variation in storage overhead

of ix-sized tiles. OpTile schemes produce more stable results than

the ix-n schemes.

5.2.2 Naive Prediction. In addition to evaluating the network

cost under perfect prediction, we also measure the downloading

volume of 360-degree video streaming with inaccurate prediction.

In this experiment, we employ a naive prediction algorithm. This

algorithm predicts the user’s head orientation three seconds after

any point in the video. Prediction is performed by assuming the

user’s head orientation does not change position after three seconds

has passed. For a temporal segment with its playback deadline in

three seconds, the client irst downloads tiles that would cover the

naively-predicted viewport. We also assume that the client makes

perfect predictions one second before the playback deadline. If the

three-second prediction was incorrect, we allow the client to use

its perfect one-second prediction to download any missing tiles in

the user viewport.

 1

 2

 3

 4

diving paris r-coaster time venice

N
o
rm

a
liz

e
d
 S

to
ra

g
e
 S

iz
e

 9

origin
OpTile α=0
OpTile α=1

OpTile α=1000

fix-64
fix-128
fix-256
fix-512

(a) 1920×960

 1

 2

diving paris r-coaster time venice

N
o
rm

a
liz

e
d
 S

to
ra

g
e
 S

iz
e

 4

 5

origin
OpTile α=0
OpTile α=1

OpTile α=1000

fix-128
fix-256
fix-512

fix-1024

(b) 3840×1920

Figure 5: Normalized storage size with

various cutting schemes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

diving paris r-coaster time venice

N
o
rm

a
liz

e
d
 D

o
w

n
lo

a
d
e
d
 V

o
lu

m
e origin

OpTile α=0
OpTile α=1

OpTile α=1000

fix-64
fix-128
fix-256
fix-512

(a) 1920×960

 0

 0.5

 1

 1.5

 2

diving paris r-coaster time venice

N
o
rm

a
liz

e
d
 D

o
w

n
lo

a
d
e
d
 V

o
lu

m
e origin

OpTile α=0
OpTile α=1

OpTile α=1000

fix-128
fix-256
fix-512

fix-1024

(b) 3840×1920

Figure 6: Per-segment normalized down-

loaded volume averaged over traces from

18 users with perfect prediction.

 0

 0.5

 1

 1.5

 2

 2.5

 3

diving paris r-coaster time venice

N
o
rm

a
liz

e
d
 D

o
w

n
lo

a
d
e
d
 V

o
lu

m
e origin

OpTile α=0
OpTile α=1

OpTile α=1000

fix-64
fix-128
fix-256
fix-512

(a) 1920×960

 0

 0.5

 1

 1.5

 2

diving paris r-coaster time venice

N
o
rm

a
liz

e
d
 D

o
w

n
lo

a
d
e
d
 V

o
lu

m
e origin

OpTile α=0
OpTile α=1

OpTile α=1000

fix-128
fix-256
fix-512

fix-1024

(b) 3840×1920

Figure 7: Per-segment normalized down-

loaded volume averaged over traces from

18 users with naive prediction.

Therefore, the total downloading volume of a temporal segment

is the sum of the costs to download the tiles from the three-second

prediction and the remaining tiles downloaded from the perfect

one-second prediction.

The results are shown in Figure 7. Compared to perfect predic-

tion, the downloading volume of all tiling schemes has increased.

When α = 1000, our scheme performs the best in two out of ive

videos: łparisž and łtimež. In the rest three videos, OpTile’s down-

loading volume is within 25% of the best ixed-tiling scheme. Com-

pared to the original scheme without tiling, OpTile can save 35% to

49% downloaded volume for 1920 × 960 videos, 39% to 53% down-

loaded volume for 3840 × 1920 videos.

Although ixed-tiling schemes may perform better for these

three videos, their performances vary signiicantly. For example,

for videos in 1920 × 960, ix-128 performs the best for łdivingž,

łr-coasterž and łvenicež, but performs even worse than the original

scheme without tiling for łparisž. For videos in 3840 × 1920, ix-128

performs the best for łdivingž, but worse for łparisž and łtimež

among all ixed-tiling schemes. This performance variation is not

unexpected, as ixed tiling schemes do not take video content char-

acteristics or user watching behavior into account when making

tiling decisions. On the other hand, when setting α = 1000, OpTile

always signiicantly outperforms the original non-tiled projection

scheme and performs within 25% of best-performing ixed tiling

scheme.

6 CONCLUSION

In this work, we outlined a fundamental problem in 360-degree

video streaming: wasted bandwidth associated with unseen por-

tions of the 360-degree view. This bandwidth problem has been

addressed by two main approaches. Oriented projections deine a

direction of improved quality; a user viewport oriented in this di-

rection will experience greater visual quality with lower bandwidth

consumption. Tile-based approaches cut the 360-degree view spa-

tially into disjoint rectangular sections. At best, these approaches

are able to send only the tiles needed to cover the viewport.

We attempt to advance the state of tile-based approaches by con-

sidering how to best tile a projected 360-degree surface to optimize

combined use of storage and download bandwidth. We formulate

these storage and bandwidth concerns as an ILP. Experimentation

by running the ILP on a training set of user head orientations and

evaluating the solution’s storage and bandwidth costs on a disjoint

test set of user head orientations shows that these non-uniform

ILP tiling solutions can signiicantly outperform existing tilings

schemes.

7 ACKNOWLEDGEMENT

We appreciate constructive comments from anonymous referees.

This work is partially supported by NSF under grants CNS-1524462

and CNS-1618931 and a fund from Adobe Systems.

REFERENCES
[1] 360-degree videos head movements dataset. http://dash.ipv6.enstb.fr/headMov

ements/.
[2] Akamai’s [state of the internet] q1 2016 report. https://www.akamai.com/uk/en

/multimedia/documents/state-of-the-internet/akamai-state-of-the-internet-r
eport-q1-2016.pdf.

[3] Equirectangular Projection. http://mathworld.wolfram.com/EquirectangularPro
jection.html.

[4] FFmpeg. http://www.fmpeg.org/.
[5] Glpk (gnu linear programming kit). https://www.gnu.org/software/glpk/.
[6] Gpac hevc tile-based adaptation guide. https://gpac.wp.imt.fr/2017/02/01/hevc-t

ile-based-adaptation-guide/.
[7] Internet Connection Speed Recommendations. https://help.netlix.com/en/nod

e/306.
[8] Kvazaar. https://github.com/ultravideo/kvazaar.
[9] Next-generation video encoding techniques for 360 video and VR.

https://code.facebook.com/posts/1126354007399553/next-generation-vid
eo-encoding-techniques-for-360-video-and-vr/.

[10] Under the hood: Building 360 video. https://code.facebook.com/posts/
1638767863078802/under-the-hood-building-360-video/.

[11] C. M. Bishop. Neural networks for pattern recognition. Oxford university press,
1995.

[12] X. Corbillon, A. Devlic, G. Simon, and J. Chakareski. Viewport-adaptive navigable
360-degree video delivery. arXiv preprint arXiv:1609.08042, 2016.

[13] L. D’Acunto, J. van den Berg, E. Thomas, and O. Niamut. Using mpeg dash srd for
zoomable and navigable video. In Proceedings of the 7th International Conference
on Multimedia Systems, page 34. ACM, 2016.

[14] M. Graf, C. Timmerer, and C. Mueller. Towards bandwidth eicient adaptive
streaming of omnidirectional video over http: Design, implementation, and eval-
uation. In Proceedings of the 8th ACM on Multimedia Systems Conference, pages
261ś271. ACM, 2017.

[15] M. Hosseini. View-aware tile-based adaptations in 360 virtual reality video
streaming. In Virtual Reality (VR), 2017 IEEE, pages 423ś424. IEEE, 2017.

[16] M. Hosseini and V. Swaminathan. Adaptive 360 vr video streaming based on
mpeg-dash srd. InMultimedia (ISM), 2016 IEEE International Symposium on, pages

407ś408. IEEE, 2016.
[17] M. Hosseini and V. Swaminathan. Adaptive 360 vr video streaming: Divide and

conquer! arXiv preprint arXiv:1609.08729, 2016.
[18] ISO/IEC 23009-1:2014 Information technology ś Dynamic adaptive streaming

over HTTP (DASH) ś Part 1: Media presentation description and segment formats.
Standard, International Organization for Standardization, May 2014.

[19] J. Le Feuvre and C. Concolato. Tiled-based adaptive streaming using mpeg-dash.
In Proceedings of the 7th International Conference on Multimedia Systems, page 41.
ACM, 2016.

[20] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale
optimization. Mathematical programming, 45(1):503ś528, 1989.

[21] O. A. Niamut, E. Thomas, L. D’Acunto, C. Concolato, F. Denoual, and S. Y. Lim.
MPEG DASH SRD: spatial relationship description. In Proceedings of the 7th
International Conference on Multimedia Systems, page 5. ACM, 2016.

[22] D. Salomon. Transformations and projections in computer graphics. Springer
Science & Business Media, 2007.

[23] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand. Overview of the high eiciency
video coding (hevc) standard. IEEE Transactions on circuits and systems for video
technology, 22(12):1649ś1668, 2012.

[24] A. Taghavi Nasrabadi, A. Mahzari, J. D. Beshay, and R. Prakash. Adaptive 360-
degree video streaming using layered video coding. In Virtual Reality (VR), 2017
IEEE, pages 347ś348. IEEE, 2017.

[25] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the h.
264/avc video coding standard. IEEE Transactions on circuits and systems for video
technology, 13(7):560ś576, 2003.

[26] M. Yu, H. Lakshman, and B. Girod. Content adaptive representations of omnidi-
rectional videos for cinematic virtual reality. In Proceedings of the 3rd International
Workshop on Immersive Media Experiences, pages 1ś6. ACM, 2015.

[27] A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj. Hevc-compliant tile-
based streaming of panoramic video for virtual reality applications. In Proceedings
of the 2016 ACM on Multimedia Conference, pages 601ś605. ACM, 2016.

[28] C. Zhou, Z. Li, and Y. Liu. A Measurement Study of Oculus 360 Degree Video
Streaming. In Proceedings of the 8th International Conference on Multimedia
Systems. ACM, 2017.

http://dash.ipv6.enstb.fr/headMovements/
http://dash.ipv6.enstb.fr/headMovements/
 https://www.akamai.com/uk/en/multimedia/documents/state-of-the-internet/akamai-state-of-the-internet-report-q1-2016.pdf
 https://www.akamai.com/uk/en/multimedia/documents/state-of-the-internet/akamai-state-of-the-internet-report-q1-2016.pdf
 https://www.akamai.com/uk/en/multimedia/documents/state-of-the-internet/akamai-state-of-the-internet-report-q1-2016.pdf
http://mathworld.wolfram.com/EquirectangularProjection.html
http://mathworld.wolfram.com/EquirectangularProjection.html
http://www.ffmpeg.org/
https://www.gnu.org/software/glpk/
https://gpac.wp.imt.fr/2017/02/01/hevc-tile-based-adaptation-guide/
https://gpac.wp.imt.fr/2017/02/01/hevc-tile-based-adaptation-guide/
https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306
https://github.com/ultravideo/kvazaar
https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://code.facebook.com/posts/1638767863078802/under-the-hood-building-360-video/
https://code.facebook.com/posts/1638767863078802/under-the-hood-building-360-video/

	Abstract
	1 Introduction
	2 Motivation and Related work
	2.1 Two-dimensional Video Encoding
	2.2 Projecting 360-degree Surfaces onto the Plane
	2.3 360-degree Video Streaming

	3 Design of OpTile
	3.1 Problem Formulation
	3.2 Cost Vector Construction

	4 Implementation
	5 Evaluation
	5.1 Server-side Storage Size
	5.2 Client-side Downloaded Volume

	6 Conclusion
	7 ACKNOWLEDGEMENT
	References

