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Abstract—With the explosive growth of online video content,
the demand for high-quality video is ever-rising. To take ad-
vantage of recent advances in deep learning, in this paper, we
propose and implement a framework, FFmpegSR, that applies
deep learning-based super-resolution into an FFmpeg filter to
implement real-time 4K video super-resolution. FFmpegSR ap-
plies super-resolution to the Y channel only, allowing reduced
inference time while maintaining good inference quality. To
further improve the inference speed, we also develop a patch-
based solution that uses saliency detection to select regions of
interest on the video frame. This allows us to achieve faster
inference on key patches only instead of full video frames. We
used videos from a public dataset for evaluation. Results show
that FFmpegSR can achieve real-time super-resolution to 4K with
high visual quality.

I. INTRODUCTION

With the rapid growth of video content consumption, nowa-
days it is crucial to deliver high-quality video to the users.
However, due to constraints with network bandwidth, it can be
infeasible for users to smoothly stream videos in high quality.
Existing research works have proposed to employ an end-
to-end video quality enhancement solution using deep neural
network (DNN)-based super-resolution models, e.g., [1]–[3].
The main idea with these approaches is to pre-train super-
resolution models on a per-video basis (or even finer granular-
ity). During video streaming, users will download both a low
resolution version of the video and a super-resolution model
for enhancing the resolution and quality of the video frames
before displaying them to the users. Most existing works focus
on upscaling low resolution input videos. e.g., 240p, 260p,
720p, to output videos up to 1080p. However, this can be
insufficient for users’ demands for videos in resolution as high
as 4K.

Targeting output video frames at 4K means that a signifi-
cant amount of computation is required for per-frame super-
resolution. However, despite advanced hardware resources,
e.g., GPUs, that are available to users, super-resolution at such
high resolution can still take a long time (e.g., over 400 ms) to
upscale one single image. On the other hand, video streaming
requires frames to be processed at a high throughput to meet
real-time requirements. For example, the per-frame processing
time should not exceed 40 ms for a video with a frame rate
of 25 frames per second (fps).

In this paper, we design and implement FFmpegSR –
a framework for upscaling high resolution videos with

super-resolution model, leveraging the open-source FFmpeg
project [4]. FFmpegSR can be configured to use any super-
resolution model, e.g., SRCNN [5], FSRCNN [6], ESPCN [7],
and EDSR [8]. To ensure real-time performance, however, it
is preferable to use models with smaller sizes. To improve
super-resolution inference speed, we take advantage of video
saliency detection and implement patch-based video quality
enhancement. Evaluation results show that FFmpegSR is able
to achieve real-time video super-resolution at 4K. In addi-
tion, we compare our FFmpegSR framework with the Super-
Resolution Filter (SRF) [9] implemented in the FFmpeg repos-
itory. Since SRF does not support super-resolution on patches,
we compare the inference time performance of full-frame
super-resolution only. Results also show that our proposed
framework can achieve up to 1.8x speedup.

II. DESIGN OF FFMPEGSR

Unlike many previous works, we aim to perform super-
resolution on a per-frame basis. To this end, we first pro-
pose and implement a basic deep learning-based super-
resolution framework, which we refer to as FFmpegSR-Basic.
FFmpegSR-Basic integrates super-resolution models with the
popular cross-platform video processing pipeline of FFmpeg.
Motivated by the results obtained from FFmpegSR-basic, we
then propose to improve the performance of real-time super-
resolution in three aspects: channel reduction, model selection,
and patch selection.

A. FFmpegSR-Basic

The gray-shaded boxes in Figure 1 represent components in
the FFmpegSR-Basic framework. Since many existing super-
resolution models are trained input data with R/G/B channels,
FFmpegSR-Basic takes input videos in the GBRP pixel format.
To perform super-resolution on each video frame decoded
by FFmpeg, we implemented an FFmpeg video filter. Con-
sider a pre-trained deep learning-based super-resolution model,
e.g., ESPCN [7], we have to transform it to the serialized
TorchScript model for use with FFmpeg. To do so, we used
the torch.jit.trace function. We then used CMake
and the PyTorch C++ API – LibTorch [10] to generate a
shared library file, libffmpegsr.so, that is able to load
and execute the TorchScript model. Output from the super-
resolution model will then be written to the output of the video
filter we implemented. Our FFmpegSR-Basic framework can
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Fig. 1: Overview of the FFmpegSR framework. The gray-shaded boxes represent components in our basic deep learning-based
super-resolution framework, FFmpegSR-Basic.

TABLE I: Performance of three deep learning-based super-
resolution models. Here, model size is represented in bytes.
The input videos are in 1920x1080 resolution (2K) at 25
frames-per-second (fps). x2 super-resolution is applied, and
the output resolution is 3840x2160 (4K). “speed” is relative
to the frame rate, i.e., 25 fps.

RGB inputs # parameters model size speed
FSRCNN 27,267 133,869 0.523x
ESPCN 26,796 119,254 0.636x
EDSR baseline 1,369,859 5,605,671 0.093x

TABLE II: Performance of three deep learning-based super-
resolution models when super-resolution is only performed on
the Y-component of the YUV representation of decoded video
frames. Model size is represented in bytes. “speed” is relative
to the frame rate, i.e., 25 fps.

model # parameters model size speed
FSRCNN 24,067 121,069 0.489x
ESPCN 21,284 97,238 1.060x
EDSR baseline 1,367,553 5,596,455 0.103x

be configured to load any traced and serialized TorchScript
model for performing per-frame super-resolution.

Naively applying super-resolution for each video frame
using FFmpeg-Basic, however, takes a long time. Table I
shows the performance of three deep learning-based super-
resolution models on a desktop computer with Nvidia RTX
3080 Ti GPU. Note that the EDSR baseline model has 16
resblocks with feature dimension of 64, while EDSR [8] has
64 resblocks with the feature dimension of 256. The input
video of these experiments is the “RaceNight” video from
the UVG Dataset [11] in RGB format. We preprocessed this
video to 1920x1080 resolution (we also refer to this as 2K
resolution throughout the paper) at 25 frames-per-second (fps).
These models applied x2 super-resolution, and the resolution
of output frames is 3840x2160. (We also refer to this as 4K
resolution hereinafter.)

In this table, we compare different models by listing their
number of parameters and traced model sizes. For performance
metrics, we compare each model’s super-resolution “speed”,
represented as the overall speed recorded by the FFmpeg
pipeline against the frame rate (e.g., 25 fps).

Results show that even with ESPCN which has the least
number of parameters and the smallest model size, it still
takes more than 50 ms to process a video frame. These results
indicate that even with a powerful GPU as we used in this
experiment, it is infeasible to achieve real-time enhancement
of video frames to 4K quality by naively using super-resolution
models and settings. Next, we describe three approaches for
improving the real-time performance of deep learning-based
video frame super-resolution.

B. Channel Reduction

Most deep learning-based super-resolution models use the
RGB format. However, video frames are typically converted
to the YUV format, e.g., yuv420p, before being encoded by
video codecs such as H.264. In addition, human eyes are most
sensitive to the luminance component, which indicates that the
Y channel is the most important component. This led us to
save the computation by performing super-resolution on the
Y channel only.

Using the same input video (1920x1980 input resolution,
25 fps) as Table I, Table II shows the model performances
when super-resolution is only performed for the Y channel
of the YUV representation of the decoded video frame. With
reduced input channel, the number of parameters and model
size of all models have slightly reduced compared to Table
I. The performance of ESPCN substantially improved after
channel reduction: the super-resolution speed can now reach
1.06x, faster than the video frame rate. For EDSR baseline,
however, operating on the Y-channel as opposed to 3 channels
only improved the speed from 0.093x to 0.103x. This is be-
cause its performance constraints are the number of resblocks
and the high dimension of feature space. To meet real-time
super-resolution demands, we need to further adapt its model
architecture.

C. Model Selection

The EDSR model has a large number of parameters. To
further improve its real-time performance, we reduce its
number of resblocks and feature dimensions and evaluate
its super-resolution quality. We chose the following settings:
r2, r4, r8, selecting the number of resblocks to be 2,
4, and 8, respectively, and f8, f16, selecting the feature
dimensions to be 8 and 16, respectively. Following our finding



TABLE III: This table compares the performance of different
models. Here, r2, r4, r8 represents the number of res-
blocks in the adapted EDSR model is 2, 4, and 8, respectively,
and f8, f16 represents the feature dimension in the adapted
EDSR model is 8 and 16, respectively.

model # of size PSNR SSIM full patch
params (bytes) frame only

ESPCN 21,284 97,383 43.86 0.9788 1.09x 2.05x
EDSRr2f8 5,409 48,753 44.42 0.9791 1.01x 2.06x
EDSRr4f8 7,745 71,793 44.35 0.9790 0.92x 1.92x
EDSRr4f16 30,465 163,207 44.62 0.9806 0.80x 1.87x
EDSRr8f16 49,025 267,211 44.80 0.9808 0.61x 1.67x

with “channel reduction”, we configure these models to take
Y channel input only.

Table III compares the number of parameters, storage sizes
in bytes, PSNR, structural similarity (SSIM) [12], and infer-
ence time results of these 4 EDSR-based models. Note that
we also include ESPCN results in the table for comparison.
The models evaluated in this table are trained using the testing
video itself (“RaceNight”) for 10 epochs. The visual quality
results (PSNR and SSIM) presented in this table are obtained
by comparing the deep learning-based super-resolution output
(full frame) with the groundtruth video frame in 4K.

For EDSR models with different configurations, it is not
surprising that the super-resolution quality generally increases
with the increase of resblocks and feature dimensions, and
the inference time increases with the number of resblocks
and feature dimensions. When performing full frame super-
resolution from 2K to 4K (i.e., 1920x1080 to 3840x2160),
only ESPCN and EDSRr2f8 can achieve more than 1x speed,
meeting the real-time requirement.

D. Patch Selection

Only 2 out of 5 models in Table III can meet the real-
time requirements when performing 2x super-resolution on 2K
frames. To further improve the inference speed, we propose to
enhance the quality via super-resolution of “key patches” on
the frame only, instead of the full frame.

To identify key patches in each frame, in this work, we
propose to use video salient object detection (VSOD [13]).
We carefully selected a state-of-art real-time video saliency
detection model, STVS [14]. STVS proposes a novel spatio-
temporal network with an extremely lightweight temporal unit.
It can achieve high-quality video salient object detection at 50
fps in real-time applications and can be directly included in
our framework.

Based on saliency maps generated by STVS, we tile each
saliency map into 6x6 patches. For a 1920x1080 input frame,
each patch is 320x180. For each patch, we calculate its
saliency score and normalize it into [0, 1]. We then use a
threshold to identify and select key patches in a frame. Here,
we set the threshold as 0.5.

Inference time improvements of using key patches are
shown in Table III. When super-resolution is only performed
on selected key patches, all 5 models can achieve real-time
inference.

III. FFMPEGSR IMPLEMENTATION

Figure 1 shows an overview of our FFmpegSR framework
that is fully integrated with the FFmpeg video processing
pipeline. With a pre-trained super-resolution model, we can
trace it to a TorchScript model for use in FFmpeg. Meanwhile,
we set up the state-of-the-art pre-trained video salient object
detection model for real-time saliency detection. It allows us
to obtain the saliency map for each frame in the video. We
spatially divide each frame into 6x6 patches. Based on the
saliency map, we can obtain information about key patches
for each frame. That is, the number of key patches and their
corresponding patch indices for each frame in a video. With
this information, we can achieve patch-based video quality
enhancement in the filter, which further saves computation and
inference time.

Within the FFmpegSR video filter, we extract the Y channel
information from each decoded frame, obtain information
about each frame’s key patches, and apply deep learning-based
super-resolution model to these key patches. In the meantime,
we also directly apply bicubic interpolation, supported by the
FFmpeg libswscale library, to upsample the full decoded
YUV frame according to the scaling factor (e.g., x2). Key
patches returned from super-resolution models are then used to
replace bicubic-upsampled Y channel data. That is to say, we
perform deep learning-based super-resolution on key patches
in the Y channel, while the remaining patches in the Y channel
as well as data in the U and V channels are upsampled
using bicubic interpolation. In this way, fewer (but highly
salient) areas of the full video frame are processed by the
super-resolution model, thereby improving the inference time
performance.

IV. EVALUATION

A. Dataset Selection

For evaluation, we used videos from the UVG dataset [11].
This dataset includes 16 4K (3840x2160) test video sequences
captured at 50/120 fps, 5 seconds and 12 seconds long. In
our experiments, we used videos that are 50 fps and 12
seconds long. Additionally, we changed the fps of these videos
from 50 to 25. Among the 7 videos that are 12 seconds
long, we selected 4 most representative videos with moving
scenes to evaluate our framework: RaceNight (v1) with fast
and plenty of motion, Twilight (v2) with slow and plenty of
motion, Flowerkids (v3) with slow and plenty of motion, and
Riverbank (v4) with slow and little motion.

B. Inference Time Comparison

We evaluate our framework on all 4 videos on 2 different
GPUs (3080 Ti and 2080 Ti). We consider two input frame
resolutions, 1K (960x540) and 2K (1920x1080), and a scaling
factor of x2. That is, super-resolution is used for transforming
frames from 1K to 2K and from 2K to 4K. Results are shown
in Table IV. Based on video salient object detection results,
overall, we have 1481, 2291, 729, and 470 key patches for
RaceNight, FlowerKids, Twilight, and Riverbank, respectively,
which corresponds to the amount of motion in these videos. In



TABLE IV: Evaluation results based on 4 videos, 3 models,
2 scaling resolutions, and 2 GPUs.

video model reso- speed on speed on PSNR SSIMlution 3080Ti 2080Ti

v1

ESPCN 1K-2K 3.34x 2.89x 38.23 0.970
2K-4K 2.12x 1.68x 38.25 0.962

EDSRr2f8 1K-2K 3.22x 2.91x 38.99 0.971
2K-4K 2.04x 1.64x 38.58 0.962

EDSRr4f16 1K-2K 3.17x 2.67x 40.26 0.976
2K-4K 1.92x 1.39x 38.86 0.965

v2

ESPCN 1K-2K 3.41x 3.11x 49.08 0.992
2K-4K 2.25x 1.76x 46.78 0.987

EDSRr2f8 1K-2K 2.21x 3.04x 47.81 0.990
2K-4K 3.30x 1.85x 46.23 0.987

EDSRr4f16 1K-2K 2.13x 2.97x 52.02 0.992
2K-4K 3.28x 1.63x 48.54 0.989

v3

ESPCN 1K-2K 3.45x 3.13x 33.12 0.861
2K-4K 2.37x 1.86x 34.72 0.898

EDSRr2f8 1K-2K 3.42x 3.16x 33.57 0.847
2K-4K 2.27x 1.85x 35.25 0.888

EDSRr4f16 1K-2K 3.26x 2.97x 35.39 0.892
2K-4K 2.27x 1.75x 36.77 0.917

v4

ESPCN 1K-2K 3.24x 2.78x 40.02 0.975
2K-4K 1.93x 1.51x 41.24 0.979

EDSRr2f8 1K-2K 3.09x 2.88x 44.01 0.979
2K-4K 1.82x 1.50x 44.76 0.973

EDSRr4f16 1K-2K 3.04x 2.53x 44.56 0.981
2K-4K 1.71x 1.22x 46.94 0.980

all evaluated scenarios, our FFmpegSR framework can perform
super-resolution to 4K at real-time speed and high visual
quality.

C. Comparison with FFmpeg-provided Super-Resolution

The FFmpeg repository includes an implementation of a
super-resolution video filter (SRF) [9]. It supports two models:
SRCNN and ESPCN. In addition, SRF can perform full-frame
super-resolution only as it does not support patch-based super-
resolution. For this reason, we are only able to compare our
FFmpegSR with SRF when both solutions are using ESPCN
to operate on full frames. In addition, for fair comparison,
both FFmpegSR and SRF perform super-resolution on the
Y channel only. Note that we focus our comparison on
inference speed. The visual quality of super-resolution depends
on the trained model, and when using the same model, e.g.,
ESPCN, with the same parameters, the visual quality results
are expected to be very similar.

We present the inference speed results for the video
“RaceNight” in Table V. Our FFmpegSR can achieve up to
1.8x speed up compared to SRF. Note that this speedup is
calculated based on full-frame super-resolution. FFmpegSR
can achieve even faster inference speed with patch-based
super-resolution.

V. CONCLUSION

In this paper, we present an efficient super-resolution frame-
work called FFmpegSR. It integrates FFmpeg with super-
resolution models such as ESPCN and can perform real-time
per-frame deep learning-based super-resolution at 4K quality.
To meet the real-time requirement, we improve the inference
time of FFmpegSR from three aspects, channel deduction,

TABLE V: This table compares the full-frame super-resolution
speed of our FFmpegSR and the super-resolution video filter
(SRF) in the FFmpeg repository. In this comparison, both
SRF and FFmpegSR use the same ESPCN model for super-
resolution.

3080 Ti 2080 Ti
SRF (in FFmpeg repository) 3.22x 1.28x
FFmpegSR (ours) 5.73x 1.59x

model selection, and saliency-detection-based patch selection.
We evaluate our framework on 4 videos using 3 super-
resolution models with 2 scaling resolutions on 2 different
GPUs. Results shows that our framework can achieve real-
time high-quality video enhancement under different settings
and can outperform the speed of the existing super-resolution
filter in the FFmpeg repository by 1.8x.
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