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Abstract—With the explosive growth of Internet traffic,
multi-source content delivery has been introduced for im-
proving the performance and quality-of-experience (QoE) of
Internet services. Upgrading from single-source content deliv-
ery to multi-source content delivery, however, may not always
lead to a better performance. Instead, a decline in terms of
delivery speed often occurs. By conducting a comprehensive
study, we show that the underlying reason of this counter-
intuitive phenomenon is actually due to the cask effect of data
sources at both macro and micro level. Specifically, at the macro
level, data sources with different types are highly heterogeneous
in terms of delivery performance, which means data sources
with certain types are particularly easy to become the “short
boards”. At the micro level, for the data sources chosen by a
client, the high diversity of participation time (DPT) of the
sources could impair the acceleration effect. Motivated by
the above findings, we design MDR (Multi-source Delivery
Redirector), a middleware that contains two optimizations
to improve the acceleration effect. One is the feature-greedy
selection algorithm which can avoid selecting data sources with
inferior types, and the other is the DPT-driven shuffle strategy
which can avoid using unstable data sources. Simulation-
based experiments show that the MDR outperforms existing
approaches in terms of overall downloading performance.

Keywords-content delivery; multi-armed bandit; acceleration
effect; measurement; Content Distribution Network (CDN).

I. INTRODUCTION

Recent years have witnessed an ever-growing trend in

the Internet traffic. It is predicted that the global IP traffic

will reach up to 3.3 ZB per year by 2021. Among this

traffic, video delivery takes up the largest portion (83%,

raising from 72% in 2016) [1]. Unfortunately, the current

Internet infrastructure is in dire straits to keep pace with the

continuous increasing user amount and data transfer volume.

Consequently, the delivering quality of experience (QoE), in

terms of both download and online services, is still far from

satisfactory [2]–[4].

Many observations show that there is a substantial room

for improving QoE by upgrading system architectures and

introducing prediction mechanisms [5], [6]. Prior systems

* Corresponding author

have undergone several generations of enabling technolo-

gies, including traditional client-server (C/S) models, content

delivery networks (CDNs), peer-to-peer (P2P) networks and

cloud-based techniques [7]–[11]. Nowadays, most industrial

content delivery systems such as Spotify [12], Thunder [13]

and Speedbit [14], employ a downloading acceleration func-

tion which is mainly based on multi-source content delivery

to improve their delivery [15]. Such a function enables the

client to simultaneously fetch different parts of the requested

content from multiple data sources using various content

delivery techniques and protocols. Previous studies [16], [17]

have shown that the function often possesses high efficiency

when applied to the Internet video streaming service.

Unfortunately, those prior efforts fall short of providing

stable and high QoE along with the growth of internet traffic,

since the interactions between a client and the multiple data

sources become far more complex today than before. We

conduct an in-depth measurement study on a large dataset

from M-Downloader, a key component embedded in Tencent

products (e.g., Tencent Video, QQ-Browser, and Xuanfeng

download manager [18]) and evaluate its core function,

i.e., accelerating content delivery tasks with multiple data

sources. Disappointingly, we find that the function often-

times (with a probability of 23%) fails to meet the goal of

improving delivery speed.

To understand the root cause of the failure, we investigate

the detailed process of multi-source content delivery as well

as comprehensively measure and analyze 1.36 billion content

delivery tasks for 58 million users (including both PC and

mobile clients) in M-Downloader. We figure out that the root

cause of acceleration failure is the so-called cask effect of

data sources at both macro and micro levels. Specifically, at

the macro level, data sources with different types are highly

heterogeneous in terms of download performance, and thus

data sources with certain types are particularly easy to

become the “short boards” in multi-source content delivery.

At the micro level, when data sources are fixed during a

period of time, the key factor that impair the acceleration is

mainly the high diversity of participation time (referred to as

DPT, formally defined in Equation (1)) of data sources. In
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other words, the download performance mainly relies on a

small subset of data sources that participate in the download

process for a relatively long period, while being distracted

by other short-period data sources.

Based on the above insights, we conclude that a major

problem in the multi-source content delivery is how to select

and shuffle data sources to reduce the cask effect during the

delivery. Thus, we design the MDR (Multi-source Delivery

Redirector), a middleware to solve this problem. MDR is

implemented at the client side and contains two modules,

i.e., feature-greedy selection and DPT-driven shuffle.

Feature-greedy selection. The feature-greedy selection

module is designed to avoid selecting data sources with

inferior types. Once the client receives the data sources

allocated by the back-end cloud, MDR activates the feature-

greedy selection module to select a certain number of data

sources. In this module, we formalize a contextual multi-

source selection problem and propose the feature-greedy

selection algorithm. This algorithm is devised based on

the classical ε-greedy algorithm in the multi-armed bandit

problem.

In the classical multi-armed bandit problem, a player at a

row of slot machines (i.e., arms) decides which machines to

play, so as to get maximum overall rewards [19]. Intuitively,

each data source can be viewed as an arm individually and

the acceleration rate can be used as the reward. However,

one arm can be pulled multiple times in multi-armed bandit

problem, whereas in data-source selection, each data source

is only required once to establish the network connection.

In addition, the instability (i.e., fluctuation in downloading

performance) of individual data sources decreases the effect

of data-source selection. Thus, instead of using individual

data sources directly, we propose a feature-greedy selection

algorithm to simplify the solution of contextual multi-source

selection problem.

According to our findings, the type of data source is an

appropriate feature in the feature-greedy selection algorithm.

Specifically, this algorithm is iteratively executed in mul-

tiple rounds. In each round, it either randomly selects a

data source with probability ε (referred to as exploration),

or combining with contextual information, chooses a data

source with the highest acceleration reward (i.e., the growth

rate of download speed) (referred to as exploitation). Then,

the acceleration reward of each feature is updated in each

round. Through such exploration-exploitation, it is possible

to achieve an approximately optimal accelerated reward.

DPT-driven shuffle. After connecting with the selected

data sources, the DGT-driven shuffle module monitors the

status of each connected data source. Geriodically, it discards

the data sources which are broken or whose diversity of

participation time exceeds a certain threshold, and then

activates the feature-greedy selection module to reselect

data sources. By doing this, the DGT-driven shuffle module

Figure 1: Architecture of the M-Downloader system.

tries to avoid using the micro-level “short boards” (i.e., the

inactive data sources).

Performance of MDR. We evaluate the performance of

MDR through simulation experiments. Our simulations with

large-scale traces show that MDR exhibits faster conver-

gence than the existing random selection algorithm (i.e.,

the core algorithm used in M-Downloader), and its average

growth rate of download speed is at least 40% higher.

In summary, this paper makes three key contributions:

• A large-scale analysis of multi-source content delivery

which highlights a serious anomaly in upgrading the

initial single-source content delivery to multi-source,

and draws data-driven insights that form the basis for

our design (§III-B).

• The MDR framework for improving the multi-source

content delivery performance via the online data

sources selection module and DGT-driven shuffle (§IV).

• The simulation experiment that shows the advantages of

feature-greedy selection algorithm compared with other

related algorithms and demonstrates the effectiveness of

MDR in performance improvement (§V).

II. SYSTEM OVERVIEW

As demonstrated in Figure 1, the M-Downloader system

is composed of two parts: the front-end client and the back-

end cloud. The client is embedded in a number of popular

Internet applications, such as dedicated downloader, web

browser, and video streaming applications. The cloud is

mainly made up of three components: the Data Source Map,

the Data Source Scheduler, and the System Logs. Below we

describe the working principle of the system by following

the message and data flows of a typical download task.

When a user wants to acquire a file from a data source (say

s0), she first issues a download request to the back-end cloud

through the front-end client. The download request usually
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contains the URL of the original data source (i.e., s0),

the user’s application type, the user-configured maximum

number of data sources to be used (denoted as u and

set as 35 by default), and so forth. Meanwhile, the client

starts to download the requested file content from s0 to

maximize its throughput, i.e., begins the phase of single-

source downloading.

On receiving the download request, the cloud first maps

s0 onto all the other data sources (say s1, s2, · · · , sn
) that

provide the same file content. This is achieved by utilizing

the Data Source Map which constantly discovers and updates

available data sources across the Internet. Afterwards, the

Data Source Scheduler randomly picks several (say m) data

sources from the n data sources (i.e., s1, s2, · · · , sn
), and

then sends them to the client. Usually, m is larger than u

while smaller than n (i.e., u < m < n) as long as n is large

enough. On the contrary, if u ≥ n, all the other data sources

are sent to the client (i.e., m = n). Exceptionally, if m = 0,

which indicates that no extra data sources are available for

downloading this file, the cloud will notify the client of the

impossibility of multi-source content delivery.

After getting the m data sources (m > 0), the client

also randomly picks a few (say c) data sources to set up

TCP/UDP connections with. Once a TCP/UDP connection

is successfully established, the client starts downloading a

chunk of the wanted file from the corresponding data source.

Accordingly, the mode for downloading the file is upgraded

from single-source content delivery to multi-source content

delivery. Certainly, different chunks are downloaded from

different data sources in parallel, so that the download of

the wanted file is accelerated. Every now and then, the

client ranks the connected data sources in terms of download

speed, and replaces those worst data sources with new ones.

Finally, when the download task is successful, timed out,

or abandoned by the user, the client sends a log report to the

cloud which records detailed information of the data sources

used during the download. By aggregating such information

in the System Logs, the cloud (more specifically, the Data

Source Map) is able to identify and discard those unavailable

and low-quality data sources.

For each download request, M-Downloader can use up to

seven types of data sources for multi-source content delivery.

These types of data sources are original C/S data sources,

free C/S mirrors, charged C/S mirrors, charged CDN data

sources, free CDN data sources, ISP caches, P2P data

sources. Normally, the CDNs are charged infrastructures that

facilitate content delivery through strategically deploying

edge servers at multiple locations. In this situation, the

free CDNs refer to those CDNs deployed by Tencent, and

they are free to M-downloader. The ISP caches, deployed

by Internet Service Providers (ISPs), are also free to M-

downloader users. Overall, these seven types of data sources

cover almost all popular content delivery techniques and

protocols at present.

III. DATASET AND PERFORMANCE ANALYSIS

To understand the performance characteristics of multi-

source content delivery, we study a large-scale dataset col-

lected from the M-Downloader system and evaluate the per-

formance of M-Downloader via comprehensive real-world

measurements.

A. Dataset

The dataset contains complete running logs of the sys-

tem during a whole week (July 13–19, 2016), involv-

ing 1,364,122,406 download tasks, 57,538,801 users and

9,827,109 unique files. Among these download tasks, the

majority (59%) utilized multiple (≥ 2) data sources, and the

remainder (41%) only used the original (single) data source.

The number and percentage of each type of data sources

used during the week is shown in Table I.

For each download task, the client sends one log report to

the cloud. As illustrated in Table II, a multi-source content

delivery log includes basic information about the download

task, as well as information of all the data sources used

during the downloading. Specifically, the report time is in

the UNIX-timestamp format. Then, each user has a unique

user ID which is the MD-5 hash code of the user account,

and each file has a unique identifier (file hash) which is the

MD-5 hash code of the file content. Moreover, download

time represents the total time consumed by a download task.

As for the download result, 0, 1, and 2 indicates a download

success, timeout, and cancellation, respectively.

A data source is represented by an HTTP, FTP, BitTor-

rent, eMule, or Magnetic URL, from which we can easily

recognize the type of the data source. Also, the IP address

of the data source is recorded. Afterwards, the acquired size

is the size of data chunks got from the data source, while

the network traffic indicates the total traffic bytes exchanged

with the data source. As the system will periodically abort

data sources with inferior download speed or broken con-

nection), the data sources have verified participation time. It

is measured as the duration, starting from the time that the

data source is connected successfully, to the time that this

data source is abandoned or the download task is finished.

Dividing the acquired size by this time, we get the average

download speed from a data source.

B. Performance Analysis

We use the dataset mentioned before to analyze the per-

formance of multi-source content delivery, and also evaluate

the seven types of data sources introduced in §II.

Observation 1: 23% of the downloads have worse per-

formance after being upgraded to multi-source content

delivery.

Our collected dataset shows that in a whole week, 0.57

billion downloads are using a single data source with an
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Table I: Number and percentage of data sources used in one week’s file downloads.

Data Source Original C/S Free C/S mirror Charged C/S mirror Charged CDN Free CDN ISP Cache P2P

# of Data Source 45078026 215209375 15042805 1761653 710193 2357478 37580148
% of Data Source 14.2% 67.7% 4.7% 0.6% 0.2% 0.8% 11.8%

Table II: Detailed information in a log report corresponding to a typical multi-source downloading task.

Report Time User ID File Hash File Size (KB) Download Time (s) Download Result · · ·

1436719727 3E2· · ·A5 EC7· · · 2A 160000 536 0 (Success) · · ·

Performance Records of All Data Sources Used

Data Source IP Address
Acquired Network Participation

· · ·

Size (KB) Traffic (KB) Time (s)

http://dl.abc.com/file.rm 116.16.17.214 640 712 10 · · ·

magnet:?xt=urn:btih:ffd· · · 183.15.13.224 10980 14765 85 · · ·

· · · · · ·

Figure 2: The success rate for different speed growth rate. Figure 3: DPT vs. growth rate of download speed.

average speed of 237 KBps and a success rate of 96.7%,

while 0.8 billion are using multiple (2.94 in average) data

sources with an average speed of 728 KBps and a success

rate of 98.4%. This general statistic comparison seems to

present that multi-source content delivery definitely outper-

forms single-source content delivery. Nevertheless, detailed

examination on the effect of upgrading (from original single-

source content delivery to multi-source content delivery)

reveals unexpected performance degradations.

The performance degradations first appear in the down-

load speed. We use the growth rate of download speed to

represent the effect of multiple sources in accelerating the

downloading performance. It is defined as Sm−Ss

Ss

, in which

S
s

and S
m

denote the average speed of downloading a file

in single-source and multi-source phase respectively. Once

this value is negative, it means that the download speed

decreases when the original single-source content delivery is

upgraded to multi-source content delivery. Surprisingly, after

the upgrade, the proportion of the tasks with speed decrease

is 23%. Additionally, approximately 37% of downloads are

trivially accelerated by almost 0 KBps.

Although multi-source content delivery sometimes gener-

ates a worse download speed, users would still believe that

using multiple data sources can at least enhance the down-

load success rate. Unfortunately, the performance degrada-

tion also appears in the download success rate. As indi-

cated in Figure 2, there is an obviously positive correlation

between the download success rate and the acceleration

effect. Specifically, when a download is slightly accelerated,

its success rate would exceed 80%; when a download is

considerably accelerated, its success rate would be as high

as 94%. On the contrary, when a download is decelerated, its

success rate can hardly reach 80% (shown as the red dashed

curve in Figure 2), sometimes even falling below 50%.

Observation 2: The diversity of participation time of

all data sources used in one download task remarkably

affects the acceleration performance.

The above several paragraphs reveal a counter-intuitive

phenomenon in our study, i.e., multi-source content delivery

is sometimes worse than the original single-source content

delivery in terms of both download speed and success rate.

Seeking for a reasonable explanation to this phenomenon,

we examine the relationships between the acceleration ef-

fect and some metrics. Actually, we find the Diversity of

Participation Time (DPT) of data sources largely affects the

overall download performance.
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Figure 4: Accelerate rate and failure rate of different types.

The DPT is defined to measure heterogeneities in terms of

contributions among the data sources used. It is calculated

as the standard deviation divided by the range, i.e.,

DPT =

√
1

N

N∑
i=1

(T
i
− T )2

T
max

− T
min

, (1)

where T
i

denotes the participation time of the i-th data

source, T denotes the average participation time of the

data sources used, and T
max

and T
min

denote the the

maximum and minimum participation time of these sources.

As described in §II, when multiple data sources are used

during a download, all these data sources do not upload

data all the time. Instead, each data source uploads data for

a specific participation time.

Figure 3 quantifies the obviously negative correlation

between the diversity of participation time and the growth

rate of download speed. Specifically, when the diversity of

participation time is small (< 0.2), a download task can

usually benefit from using multiple data sources. In fact,

this means that all data sources used are making similar

contributions. On the other hand, once the diversity of par-

ticipation time is large (> 0.25), the user can hardly benefit

from multi-source downloading. Essentially, the download

process mainly relies on a small subset of data sources that

participate for a long period, while being distracted by other

short-period data sources. Thus, to achieve effective accel-

eration by multi-source content delivery, the data sources

need to be carefully probed and selected. Specifically, once

multi-source content delivery becomes slower than single-

source content delivery and the diversity of participation

time is larger than the threshold (0.25), multi-source content

delivery should be degraded.

Observation 3: There is a significant diversity among

data sources with different types, which reflects the

differences of acceleration reward and download result.

Table III: IG of Attributes in Download and Acceleratioin.

File Size
Type of

Original Speed
Data Source

Download 0.68 0.83 0.61
Acceleration 0.35 0.60 0.33

The DPT of data sources heavily affects the growth rate of

download speed, thus it can be used to adaptively adjust the

accelerating strategy in real-time. However, the DPT can be

calculated only after the download task switches to multi-

source downloading mode. Accordingly, we hope to find

some inherent attributes to versatilely guide the acceleration.

In order to quantitatively evaluate the effects of download

(in terms of success rate) and acceleration (i.e., increase

in download speed) of different inherent attributes, we use

information gain to measure the importance of each attribute.

Information gain (IG) is defined as IG(X) = H(C) −
H(C|X), where H(C) and H(C|X) are the entropy of

C and the conditional entropy of C. It is normally used

to quantify the usability and effectiveness of a feature for

prediction. Here, the selected attributes include file size, the

type of data source and the original download speed.

Table III displays the result of information gain of each

attributes. Specifically, the type of data source is the most

important indicators for both download and acceleration,

while file size and original download speed are not the es-

sential determinants. Furthermore, we compare seven types

of data source on the download failure rate and the growth

rate of acceleration (i.e., acceleration rate). Based on the

comparison result shown in Figure 4, we summarize that

among seven types of data source, free C/S mirror has the

best delivery quality, followed by ISP, free CDN and original

C/S, with charged CDN, charged C/S mirror and P2P worst,

considering both download failure rate and acceleration rate.

This indicates that the type of data source is a fundamental

attribute that influences the overall acceleration effect, and

among these types, free C/S mirror and ISP should gain

priority in the data source selection.

Key observations: In summary, our analysis of acceleration

effect suggests that:

• Multi-source content delivery may not always result in

downloading QoE (in terms of download speed and suc-

cess rate) improvement. Sometimes it may deteriorate

the download performance.

• Excessive or inappropriate use of data sources may hurt

the download performance and DPT is a core factor

influences the acceleration effect.

• Data sources with different types are highly heteroge-

neous in terms of delivery performance, which results

in different average growth rates of download speed,

success rates of acceleration and download.

IV. MDR OVERVIEW AND DESIGN
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Driven by the above findings, we propose the Multi-source

Delivery Redirector (MDR), a middleware that helps the

clients to improve the overall downloading performance. In

this section, we first present an overview of MDR, including

its workflow, usage scenarios and components, and then

describe the feature-greedy selection algorithm and DPT-

driven shuffle strategy used in it.

A. Overview

Figure 5 shows the basic framework of MDR. After

receiving the allocated data sources from the server, the

client picks some data sources to set up TCP/UDP con-

nections with. Instead of picking data sources randomly,

MDR utilizes feature-greedy selection algorithm to reason-

ably select data sources with high quality. Meanwhile, the

DPT-driven shuffle component monitors the connected data

sources and then throws out inferior data sources. Once some

connected data sources are abandoned, the feature-greedy

selection algorithm is invoked again and selects some new

data sources to built TCP/UDP connections with.

As we can see from the Figure 5, MDR is designed

to plug in the M-Downloader client. Besides, MDR can

also be regarded as a plug-in component integrated into

many content delivery tools, such as online video platforms

(e.g., iQIYI, youtube, Tencent Video), music app (e.g., QQ

Music), and other file downloader (e.g., Thunder). In order

to improve transfer performance, these tools usually utilize

a function to accelerate the content delivery by connecting a

variety of data sources, For example, Tencent Video utilizes

P2P and CDN data sources simultaneously to improve the

fluency of media display. This function is very similar to

the acceleration principle used in the M-Downloader client.

Thus, it is feasible to integrate MDR into general content

delivery tools with acceleration capability.

In conclusion, the core objective of MDR is to improve

the performance of acceleration function adopted in content

delivery tools. The solutions are mainly built on the data-

driven observations in §III-B. First, based on Observation

3 in §III-B, MDR leverages the features of data sources

to predict their acceleration effect and then selects the

data sources with the best acceleration effect. Second, to

correct false selection and prevent connection failure, MDR

evaluates the combination effects of these selected data

sources and throws out the data sources of low quality based

on Observation 2 in §III-B.

Given the basic overview, there are two practical ques-

tions:

1) How to select data sources reasonably?

2) How to update the set of connected data sources?

Next, we address these questions.

B. Online Data Source Selection

Problem Formalization. In data source selection problem,

the client receives a number of data sources (denoted as

Figure 5: Architecture of the M-Downloader system.

s1, s2, . . . , sm
) allocated by the server, and needs to pick c

data sources to establish TCP/UDP connections (normally

c < n). Before that, the client doesn’t know the connecting

quality of each data source, but knows some features (F)

of data source, e.g., the type, IP address, previous quality

and etc.The data source selection algorithm must find c data

sources to optimize the acceleration effect. Here, we use the

growth rate of download speed to quantify this effect. Thus,

the quantitative value is also called acceleration rate (AR).

This problem can be naturally modeled as a multi-armed

bandit problem with context information in reinforcement

learning. The classical multi-armed bandit problem is a

contextual-free bandit problem in which a player at a row of

slot machines (i.e., arms) has to decide which machines to

play. When played, each machine provides a random reward

from a probability distribution specific to that machine.

The objective of the player is to maximize the sum of

rewards earned through a sequence of lever pulls [19].

This poses an exploration-exploitation trade-off: the player

simultaneously attempts to acquire new knowledge (called

“exploration”) and optimize his or her decisions based on

existing knowledge (called “exploitation”).

In our formalization, we may view data sources allocated

by server as arms and define the acceleration rate as reward.

Based on the previous knowledge, we may select a data

source with the highest reward to build a TCP/UDP con-

nection. However, by contrasting our problem and multi-

armed bandit problem, we find that one arm could be

pulled more than one time during the play, while one data

source only need to be connected once at most in one

download task. Besides, the server may allocate dozens

of data sources to the client for one download request.

Therefore, the exploration for each data source in one client

may not make much sense and even be time-consuming.

In order to deal with the aforementioned dilemma, we

propose to simplify the online data source selection problem

to the feature-based online data source selection problem.

Here, the feature mainly denotes the seven types of data

sources. This simplification is inspired by Observation 3

in §III-B, i.e., data sources with different types are highly

heterogeneous. In this way, the exploration-exploitation is

mostly depended on the type of data sources. Following the

previous works [20], [21], we formally define the feature-

based data source selection problem as follows.

Definition 1: (Feature-Based Online Data Source
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Selection Problem) In a feature based online data

source selection problem, there is a distribution P over

(F , s1, . . . , sm
), where F is the set of features, a ∈

(1, . . . ,m) is one of the m data sources to be connected,

and AR
a
∈ [−1, 1] is the reward for data source a. The

problem is a repeated game: on each round t, a data source

a is chosen by the client based on its feature F , and its

reward AR
at,t

is revealed.

In the process of selection, we define the total T -round

reward as
∑

T

t=1
AR

at,t
. Similarly, the optimal expected

T -trial reward is defined as E(
∑

T

t=1
AR

a
∗

t
,t
) where a

∗

t

is the data source with maximum expected reward at the

round t. For multi-armed bandit model, the optimal arm-

selection strategy should minimize the regret. Similarly, the

selection algorithm should employ a selection strategy which

minimizes the regret. Here, the T -round regret R(T ) is

defined formally by

R(T ) = E(

T∑
t=1

AR
a
∗

t
,t
)− E(

T∑
t=1

AR
at,t

) (2)

Alternatively, our goal is to design an algorithm such that

the E(
∑

T

t=1
AR

at,t
) is maximized.

Algorithm Design. - uring each round, the standard form

of multi-armed bandit problem does not consider any addi-

tional information besides the observed reward of previous

selected arms. Whereas our formalization of feature-based

online data source selection problem is inspired by contex-

tual multi-armed bandit model [20], which includes exter-

nal information to direct the selection strategy. Therefore,

we refer to the solution of contextual multi-armed bandit

problem, and propose a feature-greedy selection algorithm

(Algorithm 1) to solve the online data source selection

problem in client.

This algorithm is based on the simplest and the most

widely-used algorithm (i.e., ε-greedy algorithm) in multi-

armed bandit problem [20], [22], and is improved by taking

advantage of the observation in §III-B. Formally, the feature-

greedy selection algorithm earns the rewards from discrete

rounds t = 1, 2, · · · , n. On the whole, the improvements in

our algorithm include two aspects. On one hand, Algorithm 1

integrates ε-decreasing strategy to improve the performance.

In ε-greedy algorithm, ε is usually a constant value to

balance the exploration and exploitation. However, at first

the client doesn’t know the performance of data sources

with different features. Thus it needs explore frequently to

learn this knowledge, so the value of ε should be set large

enough. Once obtaining this knowledge, the client expects

to use the data sources with best performance so as to

maximize the benefit. At this time, a smaller ε is needed.

Note that, the experimental result in section V-B gives the

optimum value’s choice of ε0, i.e., the decreasing limit of

ε is 0.05. On the other hand, we choose the type of data

source as the feature F according to the actual measurement

Algorithm 1 Feature-Greedy Selection in M- R.

Input:

The number of rounds T , a set of data sources with fea-

tures < F, S >= {(f
s1
, s1), (fs2

, s2), . . . , (fsm
, s

m
)}, a

limit probability of exploration ε0, and the exploration

samples W ;

Output:

renewed exploration samples W ;

1: for t = 1, 2, . . . , T do

2: ε =
1√
|W |

;

3: if ε < ε0 then

4: ε = ε0;

5: end if

6: if rand() < ε then

7: //*do one-step exploration*//

8: a ⇐ a data source randomly selected from S;

9: else

10: //*do one-step exploitation*//

11: a ⇐ a data source with the feature argmaxAR
fi

;

12: end if

13: Observe a real-valued reward AR
at,t

;

14: W = W

⋃
{(f

t
, a

t
, AR

at,t
)};

15: Update reward AR
ft

=

∑
|W |

i=1
AR

i
I(f

i
= f

t
)

count(I(f
i
= f

t
))

;

16: end for

17: return W ;

result, since the different types of data sources can result in

different performances and rewards. Moreover, one thing to

be aware of is that the feature selection is scalable in this

algorithm. That is to say, if we discover that some other

features (e.g., the server’s geographic location and history

performance) have significant impacts on the performance

of content delivery, these features can also be adopted into

our algorithm to improve the effectiveness.

C. DPT-Driven Shuffle

In current content delivery system, the shuffle of data

sources mainly depends on a relatively empirical rule, i.e.,

if the connected data sources transmit slowly or are dis-

connected, they will be replaced with new ones directly.

This straightforward design only considers the transfer speed

of data sources. However, as more than one data source

undertakes the acceleration task together in multi-source

content delivery system, the acceleration effect is more

complex and thus it needs more systematic measurements

to conduct the shuffle of data sources.

In §III-B, we have explained the reason of worse perfor-

mance after accelerating. The measurement result reveals

that the diversity of participation time of data sources

(- PT) is one of the crucial factors in assessing the effect

of acceleration. More specifically, the multi-source content
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delivery mainly relies on a small subset of data sources

that participate for a long period steadily and continuously,

while being distracted by other short-period data sources.

Motivated by this observation, we propose DPT-Driven

shuffle strategy to improve the original design.

Our shuffle strategy is launched after data sources are

connected successfully. It records the delivery performance

of each data source at regular intervals, including the re-

sult of connection, the participant time and the average

speed. The shuffle rules include two: 1. Once broken links

are discovered, these disconnected data sources should be

abandoned; 2. Once the total speed of multi-source content

delivery becomes slower than that of single-source content

delivery, and DPT is larger than threshold 0.25, the data

sources with smallest participant time should be thrown

away. This step should be executed cyclically until DPT is

smaller than 0.25. The feature-greedy selection algorithm

will be performed to select other available data sources if

either of the rules is satisfied. Once multiple data sources

are used simultaneously to download one file, this step

should be executed cyclically until DPT is smaller than 0.25.

The feature-greedy selection algorithm will be performed

to select other available data sources if one or more data

sources are abandoned after executing the shuffle rules.

V. EVA0 UATIO&

To evaluate the general effectiveness of our optimizations,

we conduct comprehensive experiments with the MDR. In

this section, we first present the details of the evaluation

methodologies and then demonstrate the evaluation result of

MDR with large-scale simulations.

A. Evaluation Setup

Evaluation Framework: We evaluate the performance of

our system via simulations with a large data set (detailed

in §V-B). Specifically, in the simulation framework, we

simulate the process of data source selection and replace-

ment. The dataset is from M-Downloader logs. The purposes

of simulation are to determine the optimal coefficient of

feature-greedy algorithm and compare the performance of

different multi-armed bandit algorithms. After achieving

this, we get our feature-greedy algorithm with best-suited

parameters. We finally compare the performance of our

feature-greedy algorithm with other methods.

Algorithms: We compare the following algorithms with

feature-greedy algorithm in simulations to evaluate their

relative performance. All of these algorithms are proposed

to solve the multi-armed bandit problem so as to be useful

for the data source selection problem.

1) ε-greedy: This algorithm selects the data source of

highest expected AR with 1− ε proportion and other-

wise selects a random arm with ε proportion [22]. ε

is usually a constant value set by the user to balance

the exploration and exploitation.

2) Softmax: This algorithm chooses a data source ac-

cording to a Gibbs distribution. The probability of

being chosen is proportional to its previous AR, i.e.,

p
k
= e

ûk/τ

/

∑
n

i=1
e
ûk/τ , where û

i
is the estimated

mean of AR brought by the data source i and τ ∈ R
+is

a parameter called the temperature [23]. τ is left to the

user. A higher value of τ means more exploration of

data sources.

3) UCB2: In each round, data source i is selected to max-

imize x
i
+

√
(1+α)(ln(en/(1+α)ri ))

2(1+α)ri
and then performed

exactly �(1+α)
ri+1− (1+α)

ri� times before ending

the round and selecting a new data source [22]. The

parameter α controls the intensity of the confidence

bound.

B. System Performance

First, we compare the performance of feature-greedy

selection algorithm with that of three multi-armed bandit

algorithms (i.e., ε-greedy, softmax and UCB2) when they

are adopted to solve data source selection problem. We

utilize the dataset from M-Downloader to simulate the

process of multi-source selection. We run each algorithm

for 10000 simulated tasks and report the average ASR for

1000 rounds of each task. In each round, the algorithm

should pick 5 data sources to accelerate the content delivery.

For the convenience of comparison, we normalize AR of

each data source into the range [−1, 1] using the formula

X

′

= a+
(X−Xmin)(b−a)

Xmax−Xmin

. Here, a and b denote the interval

scope (a = −1 and b = 1), X
min

and X
max

denote the

minimum and maximum value of array.

Figure 6 and 7 show the parameter values of each al-

gorithm against the average AR and ASR. The ε-greedy

and softmax algorithm achieve the highest AR and ASR at

small values of ε and τ , while the UCB2 algorithm is the

opposite. By comparison, the optimal parameter values of

ε ∈ [0, 0.1], τ ∈ [0, 0.1] and r ∈ [0.75, 0.85]. Accordingly,

we set ε = 0.05, τ = 0.05 and r = 0.8 respectively.

&ext, we evaluate the performance of feature-greedy

selection algorithm by comparing it with other three algo-

rithms. These algorithms are tested offline with data sampled

from M-Downloader. We run each algorithm 1000 rounds

on 10000 tasks randomly sampled from the dataset, and

then report the ASR values and the average speed after

accelerating. Here, we suppose each task also should use

5 data sources to accelerate. We compare the feature-greedy

selection algorithm with the algorithms selected in previous

experiments. The parameter value ε0 in the feature-greedy

selection algorithm is set as 0.05 according to the previous

experimental results. Figure 8 and 9 display the comparison

results. The ASR and average speed increase with the

number of completed rounds. The feature-greedy selection

algorithm performs consistently better than other algorithms
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Figure 6: Average AR in different parameters. Figure 7: Average ASR in different parameters.
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Figure 8: Comparison of AR on 1000 rounds.
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Figure 9: Comparison of average speed on 1000 rounds.

in both ASR and average speed. This highlights the fact

that MDR is effective in improving the acceleration effect

through learning and adjusting data source selection strategy.

VI. RELATED WORK

System architecture in multi-source content delivery: As

the state-of-the-art approach to accelerating file delivery,

multi-source content delivery has attracted wide attention.

Cloud-based CDN has begun to enhance their content deliv-

ery performance by purchasing resources from clouds [24].

In this way, bandwidth/storage resources pervasively existing

in the Internet could be fully and collaboratively utilized.

Hybrid CDN-P2P or CDN-ISP [16], [17], [25] benefits

from the quality control and reliability of a CDN and the

inherent scalability of a P2P or ISP system. Open-P2SP, a

generalized and extended mode of P2SP, integrates various

third-party servers, content and data transfer protocols across

the Internet [26]. Compared with the architecture mentioned

above, M-Downloader practically includes all types of data

sources and thus could be used to provide more effective

acceleration function and make fully comparative study.

Large-scale data analytics for system improvement:

Data-driven techniques for performance improvements have

been applied in many works. The design of RCA is in-

spired by a case study which demonstrates the existence

of malicious clients to influence accounting accuracy [17].

CS2P achieves improvement on overall QoE by using a

data-driven model to learn clusters of similar sessions, an

initial throughout predictor and a Hidden-Markov-Model [6].

CFA achieves scalable and accurate prediction based on

a global view of quality measurements [27]. Unlike prior

works, we investigate the core function of multi-source

content delivery, i.e., acceleration, which is widely applied

in many large-scale systems. Driven by comprehensively

observations, we improve the existing data source selection

algorithm and shuffle strategy in client to enrich QoE.

Multi-armed bandit problem and algorithms: Multi-

armed bandit problem is a lighter-weight version of rein-

forcement learning. One of the challenges in this problem is

to balance the exploration and exploitation so as to achieve

highest reward from multiple choices [28]. Traditional multi-

armed bandit algorithms assume each decision has a fixed

distribution of rewards, but the acceleration reward of a data

source also depends on features of this data source and

client-side [22], [23]. In contrast, we leverage contextual

multi-armed algorithms which assume the best decision de-

pends on contextual information [20], [21]. This information

is derived from the large-scale data analytics. Consequently,

the overall reward gets a noticeable upgrading.
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VII. CONCLUSION

In this paper, we conducted an in-depth measurement

study on large-scale content delivery data. The measurement

result reveals that multi-source content delivery cannot al-

ways improve the download performance, and it is subjected

to the so-called cask effect of data sources. Accordingly,

we develop the MDR framework to alleviate the cask effect

and improve the acceleration effect. MDR uses the feature-

greedy selection algorithm and DPT-driven shuffle strategy

to pick appropriate data sources to connect with. As a

general middleware framework, the MDR can be easily

plugged into many content delivery tools to improve their

acceleration performance.
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