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ABSTRACT
In this paper, we propose a novel feature-based video stitching
algorithm for stitching back-to-back fisheye camera videos into
one omnidirectional video in a video live streaming scenario. Our
main contribution lies in a learning-based approach that refines the
homography matrix in an online manner via gradient descent. The
homography matrix is updated by training on a rolling dataset of
feature points that are extracted and matched as new video frames
are captured. Experimental results show that our method can cre-
ate stitched images that better align matching features with lower
mean squared error (MSE) than traditional feature-based stitch-
ing method. Furthermore, compared to vendor-supplied software
(VUZE VR Studio) that uses calibration-based stitching, our method
also produces visibly better results.
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1 INTRODUCTION
Virtual reality (VR) technologies have rapidly developed in recent
years, providing immersive virtual experiences for various appli-
cations such as entertainment, education, training, medicine, etc.
An essential element of virtual reality is omnidirectional images
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and videos that can be viewed in any directions. To record omnidi-
rectional content, cameras with at least two lenses are needed to
capture the omnidirectional visual information from various direc-
tions. For example, a consumer-grade 360-degree camera includes
two fisheye lenses. A further step, stitching, is needed to combine
visual content captured by different lenses into one omnidirectional
image/video frame. Stitching video content recorded by multiple
lenses is particularly challenging. This is because objects can move
between the boundaries of different lenses’ field-of-view (FoV) over
time, which makes visual artifacts even more prominent.

In this paper, we focus on stitching videos captured by dual-
fisheye cameras such as Samsung Gear 360 and VUZE XR. Two
main methods can be used for stitching back-to-back fisheye im-
ages: i) calibration-based stitching, and ii) feature-based stitching.
Due to the property of rigid connection, a series of research studies
focus on how to accurately calibrate two fisheye lenses and build
correlated coordinates between them [12, 19]. Since calibration only
needs to be performed once, the quality of stitched omnidirectional
video highly depends on the accuracy of parameters obtained from
calibration. If the calibration result is not sufficiently accurate, ob-
vious misalignments can persist in the stitched video because of
using a fixed transformation matrix during the stitching process,
as shown in Figure 1. In addition, this misalignment cannot be
eliminated since camera calibration parameters cannot be updated
during video stitching.

Compared to calibration-based methods, feature-based methods
are more flexible. Traditional feature-based methods extract feature
points from the images and use approaches such as KNN [15] to
match corresponding features. Then, through RANSAC [7], we can
calculate the homography matrix that yields the highest proportion
of inliers among matched features. With homography matrix, pixels
in one image can be transformed to corresponding pixels in another
image. With this method, the quality of stitched omnidirectional
content depends on the accuracy of homography matrix. Tradi-
tional feature-based stitching methods, however, may not produce
well-stitched results for dual-fisheye cameras. This is due to the
limited overlapping region between two back-to-back lenses’ FoVs.
With limited overlapping region, only a limited number of features
can be extracted, which leads to poor performance of the RANSAC
algorithm. Additionally, extracting and matching features and cal-
culating homography matrix on a per-frame basis will not only
increase the computational requirements and take a long time, but
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Figure 1: Visualization of the omnidirectional image stitched
with afixed extrinsic provided by the previousmethod, as out-
lined in FTV360 [14]. Despite capturing only a single person
under a tree in the real world, the processed omnidirectional
images unexpectedly blend tree and person, demonstrating
misalignment and ghosting effect from the previous method.
can also lead to worse visual experience when there is a significant
difference between homography matrices calculated from adjacent
frames. As a result, misalignments and continuous jitter can be
observed from stitched videos.

To address the issues with traditional feature-based stitching
methods, in this paper, we propose a novel feature-based video
stitching algorithm for back-to-back dual fisheye cameras in a low-
latency live streaming scenario. Our main contribution lies in a
learning-based approach that refines the homography matrix in
an online manner via gradient descent. Our algorithm first un-
warps raw fisheye frame, extracts, and matches feature points in
the overlapping region, and uses RANSAC to calculate an initial
homography matrix – as with traditional feature-based methods.
We then create a rolling dataset of extracted and matched feature
points that are considered “inliers” by RANSAC. As more dual-
fisheye frames are captured over time, we update the dataset with
inliers from newer frames. Periodically, with the updated dataset,
we refine the homography matrix via a learning-based approach
by training with the Adam optimizer [9] and mean squared error
(MSE) loss. We implemented our proposed algorithm and compared
it against both traditional feature-based method and calibration-
basedmethod used by the camera vendor-supplied software. Results
show that our method can both visibly and quantitatively improve
the quality of stitching compared to these approaches.

2 RELATEDWORK
Fisheye Lens Projection Model. Before stitching, the first step
is to unwarp the fisheye image/frame. Unwarping includes two
steps: projection from fisheye image coordinates to 3D spherical
coordinates and projection from 3D spherical coordinates to 2D
rectangular image coordinates [2]. In this work, we choose the

projection model proposed by Ho et al. [8]. First, for each point
𝑃 (𝑥,𝑦) in the raw fisheye image, we calculate its corresponding
projected 3D coordinate as 𝑃3𝐷 (cos𝜑𝑠 sin𝜃𝑠 , cos𝜑𝑠 cos𝜃𝑠 , sin𝜑𝑠 )
in the unit sphere. Here, 𝜃𝑠 and 𝜑𝑠 can be calculated as below:

𝜃𝑠 = 𝑓
𝑥 ′

𝑊
− 0.5, 𝜑𝑠 = 𝑓

𝑦′

𝐻
− 0.5

where 𝑓 is the fisheye lens’ field-of-view, and 𝑊 and 𝐻 are
the width and height of the image. We can then transform 3D
spherical coordinates to 2D rectangular image coordinates through
the equirectangular projection. We calculate 𝜌 and 𝜃 as below:

𝜌 =
𝐻

𝑓
tan−1

√︁
(cos𝜑𝑠 sin𝜃𝑠 )2 + (sin𝜑𝑠 )2

cos𝜑𝑠 cos𝜃𝑠

𝜃 = tan−1
sin𝜑𝑠

cos𝜑𝑠 sin𝜃𝑠

Then the point on the equirectangular projection 𝑃 ′ (𝑥 ′, 𝑦′) can be
obtained as:

𝑥 ′ = 0.5𝑊 + 𝜌 cos𝜃, 𝑦′ = 0.5𝐻 + 𝜌 sin𝜃

Feature Extraction.With good feature descriptors, high-quality
matching pairs can be obtained. For example, ORB [17], SIFT [13]
and SURF [3] are three feature descriptors widely used in image
stitching. ORB combines FAST [16] feature and BRIEF feature de-
scriptor [5]. It is an order of magnitude faster than SURF and over
two orders of magnitude faster than SIFT [17]. Given our goal
to achieve low-latency omnidirectional video stitching in the live
video streaming setting, we use the ORB feature in our algorithm.

The Shi-Tomasi corner detection method [18] can detect robust
corner features. It has similar time efficiency as ORB, which can
also be used in our work. Therefore, we make comparisons between
these two methods in this paper. We use the percentage of inlier
points corresponding to the optimal matrix calculated by RANSAC
as the metric. As illustrated in Table 1, experiment results show
that the inlier percentage of ORB feature points is substantially
higher than that of corner detection.
Multi-band Blending. Seamless blending is an indispensable step
for both calibration-based and feature-based stitching methods.
Without blending, users can observe two seamlines in the stitched
image. In our work, we utilize multi-band blending [4] that can
effectively avoid ghosting or unsmooth stitching. Besides, multi-
band blending can be fully parallelizable, so we believe it can be
successfully implemented in low-latency video stitching.

3 PROPOSED METHOD
In this paper, we propose a novel pipeline for omnidirectional video
stitching, where the stitching quality can be gradually improved
with the usage of Adam optimizer. The overall structure of the
pipeline is illustrated in Algorithm 1. It includes three main compo-
nents: i) feature extraction and matching, ii) homography matrix
optimization, and iii) seamless image blending. The core idea of
our pipeline lies in the second component. We describe details of
these components below with a focus on our main contribution in
learning-based homography matrix optimization.
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Algorithm 1 Learning based dual-fisheye video stitching
1: 𝑖 ← frame number
2: frame1← content recorded by one fisheye camera
3: frame2← content recorded by the other fisheye camera
4: for each recorded video frame do
5: 𝑘𝑝𝑠1← 𝑂𝑅𝐵𝑑𝑒𝑡𝑒𝑐𝑡 (𝑓 𝑟𝑎𝑚𝑒1[𝑜𝑣𝑒𝑟𝑙𝑎𝑝])
6: 𝑘𝑝𝑠2← 𝑂𝑅𝐵𝑑𝑒𝑡𝑒𝑐𝑡 (𝑓 𝑟𝑎𝑚𝑒2[𝑜𝑣𝑒𝑟𝑙𝑎𝑝])
7: if this is the first frame then
8: 𝐻, 𝑖𝑛𝑙𝑖𝑒𝑟𝑠 ← 𝑅𝐴𝑁𝑆𝐴𝐶 (𝑘𝑝𝑠1, 𝑘𝑝𝑠2)
9: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 .𝑎𝑑𝑑 (𝑖𝑛𝑙𝑖𝑒𝑟𝑠)
10: else if 𝑖%60 == 0 then
11: if # of sampled frames in the dataset > 4 then
12: Delete inliers collected from first sampled
13: frame in the dataset
14: 𝑖𝑛𝑙𝑖𝑒𝑟𝑠 ← 𝑅𝐴𝑁𝑆𝐴𝐶 (𝑘𝑝𝑠1, 𝑘𝑝𝑠2)
15: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 .𝑎𝑑𝑑 (𝑖𝑛𝑙𝑖𝑒𝑟𝑠)
16: 𝐷𝑒𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 (𝐷𝑎𝑡𝑎𝑠𝑒𝑡)
17: 𝑆ℎ𝑢𝑓 𝑓 𝑙𝑒 (𝐷𝑎𝑡𝑎𝑠𝑒𝑡)
18: 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑑𝑎𝑡𝑎, 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎 ← 𝑑𝑖𝑣𝑖𝑑𝑒 (𝐷𝑎𝑡𝑎𝑠𝑒𝑡)
19: 𝐻_𝐴𝑑𝑎𝑚 ← 𝑂𝑝𝑡𝑖𝑚𝑧𝑒 (𝐴𝑑𝑎𝑚,𝐻, 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑑𝑎𝑡𝑎, 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎)
20: 𝑙𝑜𝑠𝑠_𝐻 ← 𝑀𝑆𝐸 (𝐻, 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎)
21: 𝑙𝑜𝑠𝑠_𝐴𝑑𝑎𝑚 ← 𝑀𝑆𝐸 (𝐻_𝐴𝑑𝑎𝑚, 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎)
22: if 𝑙𝑜𝑠𝑠_𝐻 > 𝑙𝑜𝑠𝑠_𝐴𝑑𝑎𝑚 then
23: 𝐻 ← 𝐻_𝐴𝑑𝑎𝑚
24: 𝑆𝑡𝑖𝑡𝑐ℎ(𝐻, 𝑓 𝑟𝑎𝑚𝑒1, 𝑓 𝑟𝑎𝑚𝑒2)
25: 𝑀𝑢𝑙𝑡𝑖𝑏𝑎𝑛𝑑_𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔(𝑓 𝑟𝑎𝑚𝑒1, 𝑓 𝑟𝑎𝑚𝑒2)

3.1 Feature Extraction and Matching
For each frame, we first unwarp the fisheye image. Since the FoV of
fisheye lenses are known, we can calculate the overlapping regions
of a pair of back-to-back fisheye images as:𝑊overlap = FoV/180 ∗ 𝑟 ,
where FoV is the field of view of the lens, 𝑟 is the radius of the
fisheye image, and𝑊overlap is the width of the overlapping region.

Therefore, instead of detecting feature points through the whole
image (which is used in ordinary 2D image stitching where the
overlapping area is unknown), we only need to detect feature points
in the overlapping regions. Subsequently, we use template matching
to match corresponding features. For each obtained feature point
in a source image, we make it the upper left corner and create a
rectangular template image with size of 60 × 16. We then search
for the best matching (similar) part in a destination image. The
similarity is defined by normalized cross-correlation, calculated as
the following equation:

𝑅(𝑥,𝑦) =
∑
𝑥 ′,𝑦′ (𝑇 (𝑥 ′, 𝑦′) ∗ 𝐼 (𝑥 + 𝑥 ′, 𝑦 + 𝑦′))√︃∑

𝑥 ′,𝑦′ 𝑇 (𝑥 ′, 𝑦′)2 ∗
∑
𝑥 ′,𝑦′ 𝐼 (𝑥 + 𝑥 ′, 𝑦 + 𝑦′)2

, (1)

where 𝐼 (𝑥,𝑦) represents pixel at (𝑥,𝑦) in the source image, and
𝑇 (𝑥,𝑦) represents pixel at (𝑥,𝑦) in the template image, respectively.
The part with the highest normalized cross-correlation in the des-
tination image is considered the best matching part. Its upper left
corner is then set as the correspondingly matched feature point of
the feature point in the source image that generates the template.
To filter out high quality matches, we consider matched pairs with
normalized cross-correlation higher than 0.9 to be good matches
which will be subsequently used in RANSAC.

3.2 Rolling Dataset Generation
As we mentioned above, good matches are used to calculate the
optimal homography matrix through RANSAC. Meanwhile, accord-
ing to the principle of RANSAC algorithm, we can obtain inliers
which consist of matches that best satisfy the current optimal ho-
mography matrix. In our learning-based optimization, we treat the
homography matrix as a fully connected layer with inputs and
outputs both of length 3 in homogeneous coordinates (these ho-
mogeneous coordinates are converted feature point coordinates),
and we construct the dataset using homogeneous coordinates of
inliers. We set feature points in source image areas as training data
and set their matched feature points in the destination image as
label correspondingly. Instead of collecting matches on a per-frame
basis, we do so every 60 frames.

Another challenge in dataset generation is data duplication. In
some videos, the background and foreground objects in the over-
lapping regions do not change much. As a result, we may detect
duplicate features. In addition, feature points in the source image
may correspond to two or more different feature points in the des-
tination image. Thus, it is necessary to deduplicate the dataset so
that one feature point in the source image only corresponds to one
feature point in the destination image, and there is no duplicated
feature points.

Furthermore, in order to avoid continuous increase of the dataset
size during live streaming video processing, data is only collected
from four adjacent sampled frames. That is, as a new frame is
sampled, the matched features from the oldest of the four sam-
pled frames are removed from the dataset. We thus refer to our
dataset as a rolling dataset. Finally, to evaluate the performance of
our trained homography matrix, we divide dataset into a training
set (80%) and a testing set (20%), during the live streaming video
processing.

3.3 Homography Matrix Optimization
With RANSAC, the optimal homography matrix must be the one
that results in the highest proportion of inliers and calculated from
four points in the dataset. However, this is also the limitation of
RANSAC. It is possible that the optimal solution may not be calcu-
lated by the existing data.

In this paper, we propose a learning-based method to contin-
uously optimize the homography matrix initially calculated by
RANSAC as new video frames are captured over time. Work [11]
proposes a method to refine the homography matrix for a single
pair of images through batch gradient descent with a learning rate
of 0.01. However, this method is unable to converge due to the
unique properties of back-to-back fisheye camera: with rigid con-
nection, a pair of back-to-back fisheye lenses are nearly parallel,
meaning that there is no large angle or scale transformation. Our
proposed method creates a rolling dataset of matching features that
can quickly adapt to changing scenes. It regards the homography
matrix as a single fully connected layer with 3 inputs and 3 outputs
without any other hidden layers, and uses the Adam optimizer for
refining this fully connected layer. We reduce the learning rate to
10−6 according to the characteristics of the fisheye camera.

We use mean squared error (MSE) as the loss function, which is
calculated as:𝑀𝑆𝐸 = 1

𝑛

∑𝑛
𝑘=0 ((𝑥𝑘 , 𝑦𝑘 ) −𝐻 (𝑥

′
𝑘
, 𝑦′

𝑘
))2, where 𝑛 is the
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Table 1: Inlier Percentage Comparisons between Shi-Tomasi
Corner Detection and ORB on VZ videos.

Method VZ_117 VZ_118 VZ_119 VZ_120 VZ_121 VZ_122
Shi-Tomasi 26.4% 25.7% 19.5% 32.4% 41.5% 38.5%
ORB 69.4% 48.5% 45.8% 69.2% 57.0% 68.7%

number of the feature points in the rolling dataset, 𝐻 (𝑥𝑘 , 𝑦𝑘 ) is the
corresponding coordinates after homography transformation. Mul-
tiplying homogeneous coordinates by the homography matrix may
result in a non-standard homogeneous coordinate, as interpreted
below: 

𝑥

𝑦

1



𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

 =

𝑥 ′

𝑦′

𝑤

 (2)

Since the label in the generated rolling dataset is standard homo-
geneous coordinate, we need to transform the result to standard
homogeneous coordinate by Equation 3 below before applying the
MSE loss in the optimization process.

𝑥 ′

𝑦′

𝑤

 ⇒

𝑥 ′
𝑤
𝑦′

𝑤
1

 (3)

Overall, we calculate the homography matrix 𝐻 with the first
video frame and set it as the initial weight of fully connected layer.
For newly captured frames, we first determine whether it is a sam-
ple frame (line 10 in Algorithm 1). If not, we directly stitch the
unwarped fisheye image into one omnidirectional image using the
existing homography matrix. Otherwise, we determine whether
the size of dataset exceeds our constraints. If so, we remove the
features collected from the oldest sampled frame in the dataset.
Then we extract new features, use RANSAC to obtain inliers, and
add them to the rolling dataset. The training frequency is the same
as the frame sampling frequency, e.g., every 60 frames in our setup.
Before training, we deduplicate the dataset and shuffle the data. We
then separate test data and training data from the dataset. We train
the fully connected layer using Adam and MSE loss for 40 epochs
with a learning rate of 10−6. After training, we obtain a refined
homography matrix 𝐻 ′. We compare the MSE loss of 𝐻 ′ and 𝐻 on
the same testing dataset. If the MSE loss of 𝐻 ′ is smaller than that
of 𝐻 , we update homography matrix for the stitching process of
upcoming frames and set 𝐻 ′ as the initial weight of next training
process. Otherwise, we keep the same 𝐻 for the next frames stitch-
ing. We implement multi-band-blending in the overlapping part for
each frame to efficiently reduce ghosting effect.

4 EXPERIMENT AND RESULTS
4.1 Feature Comparison
In our experiment, we first compare the quality of feature points
obtained from Shi-Tomasi corner detection and ORB. For this com-
parison, we recorded six videos in both indoor and outdoor envi-
ronments using VUZE XR. Each video contains 600 frames. We
collected feature points every 60 frames and used RANSAC to
obtain an optimal homography matrix and its corresponding per-
centage of inliers. To measure the quality of feature points, we
record the percentage of inliers corresponding to 10 optimal ho-
mography matrices in total and calculate their average for each

Figure 2: Example visual comparisons between Basic
RANSAC, PROSAC, and our proposed method. We can ob-
serve that with our method, cables are aligned better.

video. Higher average of inliers percentage indicates better quality
of detected features. Table 1 shows that ORB consistently achieves
much higher inlier percentages than Shi-Tomasi corner detection.
For some videos, the inlier percentage of ORB feature points is al-
most 2 times or more than that of Shi-Tomasi corner detection. This
shows that for fisheye image stitching with limited overlapping
area, ORB can find high quality feature points that can improve the
accuracy of video stitching.

4.2 Mean Square Error Comparisons
In this part, we compare a basic traditional feature-based method
that uses RANSAC for finding the homography matrix (we de-
note these methods as ”Basic RANSAC”), PROSAC [6] that is an
improved-RANSAC with our proposed method on raw fisheye
videos with 600 frames. We performed the comparison on three
different datasets: i) six videos recorded by ourselves using the
VUZE XR 360 camera with the resolution of 5760 × 2880, ii) 120
outdoor scenes downloaded from the FTV360 dataset [14] with
the resolution of 3840 × 1920, and iii) two 360 videos downloaded
from a fisheye video dataset [1] with resolution of 2560 × 1280.
Since our method collects new features and optimizes homography
matrix every 60 frames, the Basic RANSAC and PROSAC methods
also collect new features every 60 frames and then run RANSAC
and PROSAC on the collected features to update the homography
matrix currently in use for stitching the next 60 frames. To measure
the accuracy of these two methods, we calculated Mean Square
Error (MSE), which is used in APAP [20], on test dataset we have
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Table 2: Average MSE achieved by Basic RANSAC, PROSAC and our method on different datasets. “VZ” represents video dataset
captured by VUZE XR. “April-fools-day”, “hide-and-seek”, and “race” are datasets recorded from different scenarios in the
FTV360 dataset [14]. In particular, note that video “360_0080” is recorded with a moving camera. Our method can obtain much
lower max test loss and variance compared to the Basic RANSAC and PROSAC [6] method.

Basic RANSAC PROSAC [6] Ours
Video_dataset Max Mean Var Max Mean Var Max Mean Var
VZ 0.565 0.151 0.042 0.615 0.192 0.053 0.284 0.134 0.011
april-fools-day 1.052 0.171 1.708 13.724 1.714 190.815 0.148 0.079 0.018
hide-and-seek 0.491 0.102 0.109 37.241 4.435 807.354 0.163 0.067 0.013
race 0.101 0.124 0.406 117.573 11.846 29590.611 0.126 0.052 0.006
360_0087 0.026 0.014 0.000 0.031 0.021 0.000 0.011 0.015 0.000
360_0080 (moving camera) 2.100 0.505 0.313 1.848 0.808 0.181 0.669 0.258 0.030

Figure 3: Visualization of “residual” represents the change from frame 418 to frame 419 (consecutive frames). Our method
shows less change and jitter.

built according to Section 3.2. With our frame sampling rate of 60,
we were able to record ten MSEs for each video. We then calculated
the maximum, mean, and the variance of ten test MSEs. Mean MSE
represents the overall accuracy of the entire video stitching. The
lower the test MSE, the higher accuracy we obtain. Maximum test
MSE indicates the worst situation where we may observe obvious
misalignment. Variance shows the dispersion of test MSE, which
can indirectly reflect the change of the homography matrix cal-
culated from the sample frames. Lower variance represents small
change of the homography matrix, where there is little jitter while
updating the homography matrix.

Table 2 shows comparisons among three methods under these
three metrics. It shows that our method successfully achieves lower
maximum MSE, mean MSE, which demonstrates that the stitched
fisheye videos based on our method are with less misalignments,
as illustrated in Figure 2. Regrettably, the PROSAC method demon-
strates significant limitations as it yields notably elevated maxi-
mumMSE values and variances when applied to april-fools-day,
hide-and -seek and race datasets. This is becasue PROSAC is un-
able to find the right homography matrix for two or three videos in

each dataset, where the collected features from the sampled frames
are so limited that cannot run well with PROSAC. Except for these
videos, PROSAC also obtains normal max MSE and variances.

For some videos, variance is less than 10−5 or approximately 0
since the Basic RANSAC and PROSAC methods almost detect the
same features at each sampled frame, which results in the computed
homography matrices being the same. Unfortunately, although the
variances of Basic RANSAC and PROSAC are low enough, we can
still observe jitters in the stitched videos, as shown in Figure 3.
The residual image between consecutive frames frame 419 and
frame 420, where homograhy matrix is updated and there is not
much difference between two frames, shows that our method can
maintain lower jitter in the video. When there exists changes in
the overlapping parts of the scene, our proposed method shows
substantial improvements. In another example, video 360_0080 is
recorded with amoving camera. Our method can obtainmuch lower
maximum test MSE and variance compared to the Basic RANSAC
and PROSAC method. In summary, compared with Basic RANSAC
and PROSAC, our proposed method can obtain lower maximum test
loss, mean test loss, and variance, which can reduce the occurrence
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Figure 4: Compared with Ho’s method, our method can avoid
ghosting effect. Highlight shows a man walking across the
overlapping part without ghosting effect using our method.

Figure 5: Visualized comparisons with Vuze VR Studio. Left:
our results. Right: results from Vuze VR Studio. Colored
rectangle highlight misalignments.

of misalignments and jitter and is with strong robustness under
changing and more complex environments.

4.3 Visualized comparisons with
calibration-based methods

We also compared our proposed method with calibration-based
methods implemented in VUZE VR Studio, a software which can
stitch two raw fisheye videos collected from VUZE XR into one
omnidirectional video, and [8], proposed by Ho and Budagavi. Since
we are unable to obtain the homography matrix used in these
methods, we are unable to compute MSE or variance of the stitched
videos from these methods. In addition, most omnidirectional image
quality assessment methods [10] require ground truth, which is
also infeasible in our experiment. We are thus unable to provide
numerical comparisons. Instead, we compare visual results between
two methods mentioned above and our method in Figures 4 and 5.

5 CONCLUSION
In this paper, we proposed a novel learning-based dual-fisheye
video stitching method that can gradually improve the alignment
accuracy with the Adam optimizer when processing 360-degree
videos recorded live. The result shows that our method can achieve
lower MSE loss compared to feature-based Basic RANSAC and

PROSAC method. Our method also shows good robustness under
changing and more complex environments. Moreover, compared
to calibration-based methods, results indicate our method can im-
prove the misalignment issue that exists with VUZE XR Studio.
Our method also has limitations. For example, if the overlapping
scene is relatively simple, such as only white walls, transparent
glass, etc., where we cannot detect enough effective feature points,
then our stitching results can be poor. Furthermore, our stitching
pipeline can be further accelerated by exploiting parallelization. We
believe that with the acceleration of GPU, our method can employ
more sophisticated blending techniques and be applied for real-time
high-quality fisheye video stitching. We plan to explore them in
future work.
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